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Question 1 [3 pts]
Consider a TLS ciphersuite as a tuple (Akex,Aauth,Asym,Ahash)

(a) Which choice between (Diffie-Hellman-2048, RSA-1024, AES-128-CBC, SHA-2-256) and (Diffie-
Hellman-Ephemeral-512, RSA-2048, AES-128-CBC, SHA-2-256) is the one providing the
highest security margin?

(b) During the TLS key exchange, is it possible for an active attacker to alter the value of the
session nonce, setting it to an arbitrary value decided by him?
Does this action get detected before the end of the TLS handshake?

(c) Is there any difference between picking (Diffie-Hellman-Ephemeral-2048, RSA-2048, None,
SHA-2-256) and (Diffie-Hellman-2048, RSA-2048, None, SHA-2-256) as a TLS ciphersuite?

Solution:

(a) Despite providing perfect forward secrecy, the second ciphersuite is weaker than the first
one, as it is possible to break DHE-512 with a relatively small computational effort,
thus deriving the session key. The first choice, despite employing a suboptimal choice
for key lenghts (the RSA keylength voids the effort of the 2048 bit DH key)

(b) It is possible for an active attacker to tamper precisely with the value of the session
nonce, however, as the final message in the TLS handshake includes the hash of all the
handshake messages, such tampering will be detected on the server side as the hash
computed locally will not match with the one computed by the client.

(c) No. The temporary session key which is needed to provide confidentiality on the trans-
ported data is not used, as there is no symmetric bulk encryption. (Both choices are
valid ones in TLS, although, obviously, not among the ideal ones).

Remember: In the TLS jargon, Diffie-Hellman-Ephemeral (DHE) differs from the static
Diffie-Hellman (DH) in the way that static Diffie-Hellman key exchanges always use the
same Diffie-Hellman (half)keys.
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When a key exchange uses Ephemeral Diffie-Hellman a temporary DH key is generated
for every connection and thus the same shared key is never used twice. This enable Per-
fect Forwards Secrecy, which means that if the private key of the server gets leaked, past
communication is still secure.

Question 2 [3 pts]
While reviewing an implementation of AES-128-CBC, you discover that it simply uses the last
ciphertext block from the previously encrypted message as the IV value C0 for encrypting the next
message. The implementation’s authors argue that as long as the IV of the very first message
was chosen uniformly at random, all resulting subsequent ciphertext blocks will also be distributed
uniformly at random, thus providing a secure solution1.
Discuss the robustness of this CBC implementation with respect to a Chosen Plaintext Attack.

Solution:
The described implementation cannot be recommended as a secure one because it enables
an adversary (who record every data transmission) with the ability to verify guesses on the
plaintext blocks of the encrypted communication.

Given a plaintext split up in series of a blocks P1, P2, . . . PL, the CBC mode of operation
applies the symmetric key cipher of choice (say Ek(...)) to compute the ciphertext blocks
in the following way: C0 = IV, Ci = Ek(Pi ⊕ Ci−1), with 1 ≤ i ≤ L.

The usual practice of applying a CBC mode of operation is to choose a new, unpredictable
random IV for every message that is encrypted.

The implementation mentioned above chooses all but the initial IV by setting it equal to the
final ciphertext block of the preceding encrypted message. This enable a passive adversary
to mount a chosen-plaintext attack (CPA) to verify his guess as to whether a particular
plaintext block has a particular value.

Say an adversary who has observed the ciphertext C0, . . . , Cj−1, Cj , . . . CL wants to deter-
mine whether plaintext block Pj , with 1 ≤ j < L, is equal to some string P ∗.

Note that the adversary knows the Initialization Vector that will be used when encrypting
the next message, that is CL.

The adversary causes the sender to encrypt a message M whose initial block P ′1 is equal to
P ′1=Cj−1 ⊕ CL ⊕ P ∗.
The first ciphertext block C ′1 will be computed as: C ′1=Ek(P ′1 ⊕ CL) = Ek(Cj−1 ⊕ P ∗).

However, the adversary also know that Cj = Ek(Pj ⊕ Cj−1).
This implies that C ′1 = Cj iff Pj = P ∗.

In this way, an adversary can verify a guess P ∗ for the value of any plaintext block Pj .

Note that, if the adversary knows that Pj is one of two possible values then the adversary
can determine the actual value of Pj by executing the above attack a single time.

Similarly, if the adversary knows that Pj is one out of N possible values, then by repeating
the above attack N/2 times (on average) he can determine the actual value of Pj .

1The initial IV used by SSL 3.0 (TLS 1.0) was a (pseudo)random string generated and shared during the initial
handshake phase, subsequent IVs were chosen following the deterministic pattern previously described.
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Question 3 [5 pts]
Consider a substitution-permutation block cipher with a 128-bit block and a 256-bit key, employing
32 identical 4× 4 bit S-boxes for the substitution layer. The best (i.e., highest) linear bias for the
S-Box is ε=1

8 , while the highest differential probability is 1
4 . The permutation layer is built so that

the 4 output bits of each S-Box are employed as inputs to four different boxes in the subsequent
layer. The diffusion of the cipher is such that given a change in an S-box input at round i, 4 s-boxes
will be involved at round i + 1, 16 at round i + 2 and all of them from round i + 3 onwards. The
cipher round acts on the state performing with the substitution layer, the permutation layer and
the round key addition, in this order. A single key extra key addition is present before the first
round takes place.

(a) Compute the value of a conservative estimate of the linear bias useful for retrieving the last
round key for the described block cipher assuming it is 4 rounds long, and the amount of
plaintext-ciphertext pairs available. Is it possibly broken by linear cryptanalysis?

(b) Compute the value of the differential probability useful for retrieving the last round key for the
described block cipher assuming it is 4 rounds long, and the amount of plaintext-ciphertext
pairs available. Is it possibly broken by differential cryptanalysis?

(c) Keeping the same round structure, and the same key length, is it possible to render the block
linear and differential cryptanalysis immune? If yes, describe what should be tuned and to
which extent.

Solution:

To provide a conservative estimate of the linear bias, assume that the best linear bias
can always be employed to approximate an S-Box. Consequentially, to build a linear
approximation able to retrieve the last round the best achievable linear bias piles up
1 S-Box from round 1, 4 from round 2, and 16 from round 3, for a total of 21 active
S-Boxes, considering for all of them the best linear bias ε=1

8 . The bias for the full
approximation is thus 221−1(18)21 = 220 1

262
= 1

242
, requiring ≈ 284 plaintext-ciphertext

pairs to be exploited. Since a bruteforce over the full keyspace requires 2256, the cipher
is possibly broken by linear cryptanalysis.

Similarly to the linear cryptanalysis case, we will be exploiting the best differential proba-
bility for all the S-Boxes. The number of active S-Boxes does not change with respect
to the previous analysis, thus we obtain a differential probability for the full approxi-
mation which is (14)21 = 1

242
, requiring 242 plaintext-ciphertext pairs to be exploited.

The cipher is quite likely to be broken by differential cryptanalysis.

Given the constraints, the cipher can be tweaked to be immune to both cryptanalysis
raising the number of rounds. In detail, adding a round after the fourth activates
32 S-boxes per added round. To provide linear cryptanalysis immunity, consider that
adding round will provide a multiplicative factor of 2(18)32) = 1

264
on the linear bias over

the current one of the cipher, raising the number of required ciphertexts by a factor
(264) = 2128. Two extra rounds are thus sufficient to provide linear cryptanalysis
immunity (242+256 ptx-ctx pairs required). Concerning differential cryptanalysis, a
round provides a multiplicative factor on the differential probability equal to (18)32 =
296. As a consequence, the differential probability for r rounds is 242 ·r296. To achieve
differential cryptanalysis immunity, it should hold that 242 · (r − 4)296 ≥ 2256, thus
r ≥ 7, i.e. three more rounds should be added.
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Question 4 [6 pts]

(a) Name two advantages of using cyclic groups of prime order in cryptographic schemes that rely
on the difficulty of the Discrete Logarithm Problem or the Diffie-Hellman Problem.

(b) Consider the cyclic group (Z∗169, ·).

• How many generators are there?

• Determine one generator g of Z∗169 and exhibit at least one generator for largest (proper)
subgroup of Z∗169.
• Denote as G=〈40〉 the largest prime subgroup of (Z∗169, ·) and compute the discrete

logarithm x ≡|G| logD40 14, applying the Baby-Step Giant-Step algorithm.

Solution:

(a) see lectures...

(b) • |Z∗169| = ϕ(169) = ϕ(132) = 156 = 22 · 3 · 13
Number of generators: ϕ(|Z∗169|)=ϕ(156)=48

• There are as many subgroups as the number of factors of |Z∗169| = 156, that is
10. Among these 8 are proper subgroups with cardinality 2,3,4,12,13,26,52,78,
respectively. The remaining two subgroups are the one including only the neutral
element and the group itself.
We test g = 2 to be a generator as follows:

g2 ≡169 4 6≡169 1,
g3 ≡169 8 6≡169 1,
g4 ≡169 16 6≡169 1,
g12 ≡169 4096 ≡169 40 6≡169 1,
g13 ≡169 40 · 2 ≡169 80 6≡169 1,
g13·2 ≡169 802 ≡169 147 6≡169 1,
g13·4 ≡169 804 ≡169 146 6≡169 1,
g13·6 ≡169 806 ≡169 168 6≡169 1,

g = 2 is a generator.

• The generator of the largest proper subgroup is g1 = g
156
13·6 ≡169 22 ≡169 4.

• The largest prime subgroup G has cardinality |G| = 13.

g=40, m =
⌈√
|G|
⌉
=4, g−m ≡169 40−4 ≡169 4013−4 ≡169 409 ≡169 14

assuming x = i ·m+ j, with 0 ≤ i, j ≤ m,

we have: gx ≡169 14⇔ gj ≡169 14(g−m)i

Baby-Steps
j: 0 1 2 3 4

gj : 1 40 79 118 157

Giant-Steps
i: 0 1 2 3 4

14(g−m)i: 14 27 40 . . . . . .

x ≡13 2 · 4 + 1 ≡13 9
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Question 5 [5 pts]
Consider an elliptic curve cryptosystem defined over the elliptic curve E(Z11) with equation
y2 = x3 + 1 over Z11.

(a) What is the order of the additive group (E(Z11), +)?

(b) What is the sum of the points (2, 3) and (5, 4)?

(c) Describe the encryption and decryption functions of the Elliptic Curve ElGamal cryptosystem.

Solution:

(a) |E(Z11)|=12

x, y: 0 1 2 3 4 5 6 7 8 9 10

x3 + 1 mod 11: 1 2 9 6 10 5 8 3 7 4 0

y2 mod 11: 0 1 4 9 5 3 3 5 9 4 1

Punti sulla curva

(0, 1) (0, 10)
(2, 3) (2, 8)
(5, 4) (5, 7)
(3, 5) (3, 6)
(9, 2) (9, 9)

(10, 0) O

(b) S(xS, yS) = P(xP, yP) + Q(xQ, yQ)=(2, 3)+(5, 4)
λ ≡11 (yQ − yP)(xQ − xP)−1≡11(4−3)(5−2)−1≡114
xS=λ

2−xP−xQ≡1116−2−5≡11 9
yS=λ(xP−xS)−yP≡114(2−9)−3≡112
S(xS, yS)=(9, 2)

(c) see lectures . . .

Question 6 [8 pts]
Consider the RSA modulus n=p·q=899

(a) Apply the Pollard’s P−1 factorization method to compute the two factors p and q (assuming
p<q). Consider the factor p being B-power smooth, with B=6, while the factor q is not.2

(b) Apply the Miller-Rabin primality test to the factor p of the public RSA modulus, assuming as
witness either a=3 or b=5

(c) Given the modulus factorization found as answer to (a), pick the value of an admissible secret
exponent d among d1 = 3, d2 = 35, d3 = 121, explaining the reasons of your choice.

2To solve the remaining parts of the exercise you can apply a trivial division algorithm as a back up factoring
strategy
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(d) Sign the message m=100decimal∈Zn (provided without any padding scheme) through applying
the CRT. Describe each step of the procedure.

Solution:

(a) a = 2B! mod n = 22·3·4·5·6 mod 899 ≡899 (224)5·6 ≡899 785·6 ≡899 8076 ≡899 342

gcd(a− 1,n)=gcd(341, 899)= gcd(217, 341)=gcd(124, 217)= gcd(93, 124)=gcd(31, 93)=31

n/31=29

p = 29, q = 31

(b) . . .

(c) d=121 (... not required: e ≡ϕ(n) d
−1 ≡840 121191 ≡840 361)

(d)

s = md mod ϕ(n) mod n⇔
{
s = sp mod p
s = sq mod q

where:

sp = md mod ϕ(p) mod p ≡29 100121 mod 28 ≡29 139 ≡29 5 and
sq = md mod ϕ(q) mod q ≡31 100121 mod 30 ≡31 71 ≡31 7

s ≡n

(
Mp ·M

′
p · sp +Mq ·M

′
q · sq

)
mod n

Mp = q = 31, M
′
p = q−1 mod p = 31−1 mod 29 ≡29 2−1 ≡29 15

Mq = p = 29, M
′
q = p−1 mod q = 29−1 mod 31 ≡31 (−2)−1 ≡31 −16 ≡31 15

⇒ s ≡899 (31 · 15 · 5 + 29 · 15 · 7) ≡899 5370 ≡899 875

Question 7 [4 pts]
Assume to work into the Montgomery domain: (ZN ,+,×), N = 15.
Compute the Montgomery multiplication C=A×B mod N , where A=8decimal and B=11decimal are
binary encoded values in the Montgomery domain. Show every step of the procedure.

Solution:
dlog2Ne = 4, R = 24 = 16,
gcd(R,N) = RR′ −NN ′ = 1⇔ R(1)−N(1) = 1,

R′
def
= R−1 mod N = 1 mod 15 = 1,

N ′
def
= N−1 mod R = 1 mod 16 = 1; N ′0 = 1

B = 〈B3B2B1B0〉 = 〈1011〉2
A = 〈A3A2A1A0〉 = 〈1000〉2
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0000 +
0000 A0B = 0 · 〈1011〉2
0000 +
0000 tN = (N ′

0x0)N = 0
0000 perform a right-shift of 1 bit

... +

... AiB = 0 · 〈1011〉2, i = 1,2

... +

... tN = (N ′
0x0)N = 0, i = 1,2

0000 perform a right-shift of 1 bit

0000 +
1011 A3B = 1 · 〈1011〉2
1011 +
1111 tN = (n′0x0)N = 1

11010 perform a right-shift of 1 bit

1101

C = 〈1101〉2 = 13 < N ⇒ C = 8× 11 = 13 ∈ (ZN ,+,×)

Validation:

C=8× 11
def
= 8 · 11 ·R−1 mod N=8 · 11 · 1 mod 15=−2 mod 15≡1513.
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