
Cryptography and Architectures for Computer Security
Exam Code: 095947 (old 090959), A.Y. 2014–2015, Semester: 2

Prof. G. Pelosi

July 22nd, 2015 – Exam Session

Name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Surname: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Student ID: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signature: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Time: 2h:30’. Use of textbooks, notes, phones or Internet connected devices is not
allowed. Prior to turn in your paper, write your name on any additional sheet and
sign it.

Question 1 [3 pts]
Consider a Vigenère Cipher. Each (lower-case) letter of the English alphabet is put into one-to-
one correspondence with the integer denoting its position, i.e.: a=0, b=1, . . ., z=25. The key
k=(k1, k2, . . . , km), 0≤ki≤ 25 is composed by m ≥ 2 letters and is employed to perform a block
encryption of the plaintext message x=(x1, x2, . . . , xm, xm+1, . . .), with 0≤xi≤ 25, as follows:

c=(x1+k1 mod 26, . . ., xm+km mod 26, xm+1+k1 mod 26, . . . )

• Show how to apply a Known Plaintext Attack

• Describe how to execute a Ciphertext-Only Attack

• How is it possible to design a Perfectly Secure Cipher employing a Vigenère Cipher?

Solution:
see lectures, or book, ...

Question 2 [3 pts]
Let p be a large prime and g be a generator of (Z∗p, ·). Suppose we are considering the function
h : Z 7→ Z∗p for use as a hash function, where h(x) = gx mod p, assuming x to be an arbitrary
binary string interpreted as a positive integer number, i.e.: x∈Z, x≥0.
Note that the compression property of typical hash functions is satisfied by the above definition as
messages x of arbitrary bit-length are hashed into a fixed size digest.

Assuming the computational difficulty of the discrete logarithm problem in (Z∗p, ·), which prop-
erties of cryptographic hash functions does h satisfy? Discuss if h is a sound cryptographic hash
function or not.

Solution:
The first pre-image property is guaranteed by the difficulty of the discrete log problem. The
second pre-image property is not satisfied by the proposed construction as given x and h(x),

1/5



it is trivial to compute x′=x+ l(p− 1), with l={1, 2, 3, . . . , } such that h(x′)=h(x). The
collision resistance property is also not satisfied as two messages with the same digest can
be found picking them in the set {x s.t. x = x0 + l(p− 1), l ≥ 1, ∀ x0 ≥ 0} ...

Question 3 [6 pts]
Threefish is a block cipher with a 256-bit (32 bytes) sized block and allows the use of three different
key lengths: 256, 512 and 1024 bits. Consider the three following password hashing strategies
relying on Threefish:

(a) Split the password p in 9-byte wide blocks p0 . . . pn, and generate n+1 23-byte unpredictable
random salt blocks si, 0≤i≤n. Store on the disk a sequence of blocks hi=Threefishpi||si(pi||si)
followed by the concatenation of all the si, i.e.: h0||h1|| . . . ||hn||s0||s1|| . . . ||sn.

(b) Split the password p in 9 bytes wide blocks p0 . . . pn, and generate n+1 23-byte salt blocks
si obtained as the concatenation of a 1-byte random value for each si. Store on the disk a
sequence of blocks hi=Threefishpi||si(pi||si) followed by the concatenation of all the si.

(c) Split the password p in 32-byte wide blocks p0 . . . pn, obtain a 1024-bit unpredictable random
salt s and store on the disk a sequence of blocks hi, with
h0=s and ∀i > 0, hi=Threefishs(pi−1 ⊕ hi−1)

Assume you have 16 TiB of disk space available (average access time 1ms), 32 GiB of RAM (average
access time 0.1µs) and you are able to compute 232 Threefish encryptions or decryptions per
second on a good GPU.

State how much computational effort (i.e., how much time) is required to break the proposed
password hashing schemes with the best possible technique, and whether this is practically feasible
considering only fully lowercase passwords.

Solution:

(a) This password strategy effectively cuts down the computational effort to perform a
bruteforce to the one required to find each pi exhaustively. The keyspace of a 9
character lowercase password is ≈ 269=(24.7)9=242, thus amounting to around 210

seconds in computation time i.e., ≈ 20 minutes, which is feasible. The presence
of a 23-byte (184-bit) unpredictable salt however prevents time-to-memory-tradeoffs
(TMTOs) to be employed.

(b) This password strategy suffers from a key recovery attack in the same fashion as the
previous one. However, considering the fact that the possible values for the salt are
limited to 28, it is possible to apply a TMTO strategy to reduce the time to break a
password after a precomputation effort of 218s, that is, around 72 hours. Employing a
rainbow table strategy, we know that besides the initial computation, the worst time
to break a password is given by l encryptions and l rainbow table lookups. Assuming
that the chains are stored in such a fashion to allow O(log(n)) access, the following
efforts are required: for disk stored rainbow tables, 238 chains can be stored, resulting
in a chain length of 212, and thus ≈ 1µs in computation time and 212 ∗ 38 ∗ 1ms
(≈ 15.5s)for the disk lookups. For RAM stored rainbow tables, 231 chains are stored,
resulting in a 219 chain length yielding a ≈ 122ms computation and a 219 ∗ 31 ∗ 0.1µs
lookup time (≈ 1.6s). The best strategy to break this password hashing thus retrieves
one password in 1.6 seconds employing RAM housed rainbow tables.

2/5



(c) This password hashing strategy is effectively encrypting the password employing Three-
fish in CBC mode, using the salt as both the IV and the key. Since the salt is stored
in cleartext together with the hashed password, retrieving the password is just a matter
of decrypting it in negligible time.

Question 4 [6 pts]
Show if the irreducible polynomial m(x)=x8+x4+x3+x+1∈F2[x] specified in the Advanced En-
cryption Standard (AES) to represent the elements of the finite field F28 and employed in the
S-box construction, is also a primitive polynomial.

Solution:
|F∗28 |=255=3 · 5 · 17
Assuming α∈F∗28 as both a primitive element and root of m(x), m(x) is a primitive poly-
nomial if the following relations hold: α8 ≡ α4 + α3 + α+ 1

α3 6≡ 1
α5 6≡ 1
α15 6≡ 1
α17 6≡ 1
α51 6≡ 1
α85 6≡ 1

Note that:
α15 ≡ α8 · α7 ≡ (α4 + α3 + α+ 1) · α7 ≡ α11 + α10 + α8 + α7 ≡
≡ (α7 + α6 + α4 + α3) + (α6 + α5 + α3 + α2) + (α4 + α3 + α+ 1) + α7 ≡
≡ α5 + α3 + α2 + α+ 1

α17 ≡ α15 · α2 ≡ α7 + α5 + α4 + α3 + α2

α51 ≡ (α17)2 · α17 ≡ (α7 + α5 + α4 + α3 + α2)2 · (α7 + α5 + α4 + α3 + α2) ≡
≡ · · · ≡ 1

Therefore, we can conclude that m(x) is not primitive.

Question 5 [7 pts]
Consider the cyclic group (Z∗53 , ·) with one of its generators being g=2.

(a) Show the order of the group and exhibit at least one generator for each of its subgroups.

(b) Consider the following two discrete logarithms, x0, x1, and state if each of them exists, moti-
vating your answer:

x0 = logDg(101101)

x1 = logDg20(2)

(c) Compute the logarithms which you stated to be existing.

(d) Consider a generic cyclic group of the form G=(Z∗
pk
, ·), with p≥2 a prime integer, and k≥1.

What is an efficient and secure choice for p and k to properly set up the public parameters
of a Diffie-Hellman protocol?

Solution:

3/5



(a) g = 2
|(Z∗53 , ·)| = ϕ(53) = 100
There are 9 subgroups of (Z∗53 , ·) with order 1, 2, 4, 5, 10, 20, 25, 50, 100, respectively.
Their generators are:
g0 = 1, this is the generator of the trivial subgroup composed by the neutral element
only.

g1 = g
100
2 ≡125 g

50 ≡125 124 ≡125 −1

g2 = g
100
4 ≡125 g

25 ≡125 57

g3 = g
100
5 ≡125 g

20 ≡125 76

g4 = g
100
10 ≡125 g

10 ≡125 24

g5 = g
100
20 ≡125 g

5 ≡125 32

g6 = g
100
25 ≡125 g

4 ≡125 16

g7 = g
100
50 ≡125 g

2 ≡125 4

g8 = g
100
100 ≡125 g ≡125 2

(b), (c) The base of the first logarithm is the generator of (Z∗125, ·), therefore it exists for
sure. x0 ≡100 logDg(101101) ≡100 logD2(101101) ≡100 logD2(101) ≡100

≡100 . . . Baby-Step/Giant-step . . . ≡100 60

The base of the second logarithm g20 is the generator of the subgroup with order
equal to 5. The argument of the second logarithm is the generator of the whole group,
therefore the logarithm x1 does not exists. Indeed, if g = 2 was in the subgroup
generated by g20, then it would be true that 〈g20〉 = 〈g〉 (which is clearly impossible).

(d) see lectures . . .

Question 6 [3 pts]
Consider a textbook RSA scheme, with n=pq being a product of two different primes and the
relation between the public exponent e∈Z∗ϕ(n) and the private exponent d∈Z∗ϕ(n) such that

ed mod ϕ(n)=1.

(a) Show the correctness of the identity

med ≡n m with m ∈ Zn

which states that we obtain the same message after encryption and decryption (or viceversa)

(b) Consider an RSA public modulus computed as the square of a prime number, i.e.: p=q and
n=p2. Show a simple example for the fact that, in this case, the condition ed mod ϕ(n)=1
does not imply med ≡n m, ∀ m∈Zn.

Solution:
see lectures . . .
if n = p2, and m 6∈ Z∗n, this means that m=u · p for a proper choice of the integer u.
Therefore, med ≡n m

lϕ(n)+1 ≡n m
lp(p−1)+1, for any integer l.

If lp(p− 1) + 1 ≥ 2 then mlp(p−1)+1 ≡n (up)lp(p−1)+1 ≡n u
2 · p2 · (up)lp(p−1)−1 ≡n 0 6= m

4/5



Question 7 [6 pts]
Many cryptosystems such as RSA and Diffie–Hellman key exchange are based on arithmetic oper-
ations modulo a large integer number.

(a) Explain why the Montgomery multiplication method is the preferred choice for implementing
the aforementioned cryptographic schemes.

(b) Describe the Montgomery multiplication technique, specifying the notions of Montgomery
transformation, Montgomery reduction and the basic idea for applying it to multi-precision
integer representations.

(c) Assume to work into the Montgomery domain: (ZN ,+,×), N = 21.
Compute the Montgomery multiplication C=A×B modN , whereA=16decimal andB=18decimal

are binary encoded values in the Montgomery domain. Show every step of the procedure.

Solution:

(a), (b) See lectures . . .

(c) dlog2Ne = 5, R = 25 = 32,
gcd(R,N) = RR′ −NN ′ = 1⇔ gcd(32, 21) = 32(2)− 21(3) = 1,

R′
def
= R−1 mod N = 2 mod 21 = 2,

N ′
def
= N−1 mod R = 3 mod 32 = 3; N ′0 = 1

B = 〈B4B3B2B1B0〉 = 〈10010〉2
A = 〈A4A3A2A1A0〉 = 〈10000〉2

00000 +
00000 A0B = 0 · 〈10010〉2
00000 +
00000 tN = (N ′

0x0)N = 0
00000 perform a right-shift of 1 bit

... +

... AiB = 0 · 〈10010〉2, i = 1,2,3

... +

... tN = (N ′
0x0)N = 0, i = 1,2,3

00000 perform a right-shift of 1 bit

00000 +
10010 A4B = 1 · 〈10010〉2
10010 +
00000 tN = (n′0x0)N = 0
10010 perform a right-shift of 1 bit

01001

C = 〈01001〉2 = 9 < N ⇒ C = 16× 18 = 9 ∈ (ZN ,+,×)

Validation:

C=16× 18
def
= 16 · 18 ·R−1 mod N=16 · 18 · 2 mod 21=−2 mod 15≡219

5/5


