
Cryptography and Architectures for Computer Security
Exam Code: 095947 (old 090959), A.Y. 2015–2016, Semester: 2

Prof. G. Pelosi

July 4th, 2016 – Exam Session

Name: . Surname: .

Student ID: . Signature: .

Time: 2h:30’. Use of textbooks, notes, phones or Internet connected devices is not
allowed. Prior to turn in your paper, write your name on any additional sheet and
sign it.

Question 1 [4 pts]
A5/1 is a stream cipher with a 64-bit key employed to secure GSM communications, which is still
in use whenever the link between the mobile phone and the cell is downgraded to GSM. Performing
an exhaustive key search to find a key is thus within practical feasibility, although taking quite
some computation. To this end, Time-to-Memory Tradeoffs (TMTO) are an appealing approach,
and have effectively been used to crack A5/1 encrypted messages in practice.

(a) Assuming to employ a nVidia Geforce GTX 1070, able to compute around 29×230 A5/1
keystreams per second, each one 64-bit long, calculate how much memory is required to
break A5/1 in less than 0.1s in the following two cases:

i) GDDR5 DRAM, access time 0.5µs,

ii) SATA-SSD 10µs.

Assume, for the sake of simplicity, that the data structure in memory allows you to check for
the presence of a given value with a single access, and that you are given an A5/1 plaintext-
ciphertext pair, where both are 64-bit long to the end of finding the key.

Argue on which one of the two strategies may be practically viable.

(b) Which one(s) of the following compensation for the weakness of A5/1 would render unfeasible
a TMTO based strategy? Does it prevent an exhaustive search for a single key too?

1. Employ two different instances of A5/1, one running on the actual key, and one on a
32-bit random salt (supposed to be sent at the beginning of the communication in clear),
padded with zeros up to 64-bit. Encrypt the plaintext with the first engine, and then
with the second one.

2. Add a 192b random salt (supposed to be sent at the beginning of the communication in
clear) to the key, splitting it into three 64-bit words and combining them via xor with
the key, employing the result as the A5/1 key.

Discuss the resistance against a bruteforce attack of each of these strategies.

1/6

Solution:

(a) Given that it is required to obtain a 64-bit key via TMTO, each element stored in the
rainbow tables chains will need to be 2×64b = 16B wide yielding 64 Mchains (226) per
GiB of available space. The time required to perform a single computation and lookup
can be obtained as 1

29×230+5×10−7s for the GDDR based solution and 1
29×230+×10−5s

for the disk based one. This in turn caps the maximum number of lookups which can
be performed in 0.1s to 2 × 105 ≈ 217 for the GDDR case and 104 ≈ 213 in the
SSD case. Consequentially, the remaining amount of computation should be traded
off entirely for space: in particular, in the GDDR case requires 264−17 = 247 chains to
be tabulated, while the SSD case calls for 264−13 = 250. Turning these figures into
required space yields 2PiB for the GDDR case and 16PiB for the SSD one.

(b) Solution 1) is able to ward off TMTOs (under the assumption that A5/1 is not a group)
as the required key+salt space to be tabulated is effectively bumped up to 296, which
is beyond feasibility. However, it does not hinder a single exhaustive key search since
the salt is sent in cleartext. Solution 2) does not add to the security of the system
in any way. Indeed, adding the salt via xor to the key does not change the fact that
the effective keyspace of the cipher is 64 bits, and thus the attacker will be able to
retrieve the value of the combination between the key and the salt employing the same
rainbow tables computed for the unsalted version.

Question 2 [4 pts]
While evaluating block cipher designs, you encounter an SPN one, where you are free to tweak one
out of the three following features: the S-Box, the linear diffusion layer or the number of rounds.
The basic version of the block cipher employs 16 8×8 bit identical S-boxes for the substitution
layer, and a single linear diffusion layer per round. The entire cipher is r round long, so to provide
a 2128 linear and differential cryptanalysis immunity, as the block size of the cipher is 128b.

(a) Compute r so that the desired immunity is guaranteed, assuming that the best differential
probability for the S-box is 1

8 , the best linear bias is 1
4 and the diffusion layer guarantees that

a single bit in input to it will influence at least 4 different S-boxes in the next round. Perform
the computations providing a reasonable, but conservative approximation.

(b) Assume to be measuring the latency of the cipher in round-sized units, and its area if im-
plemented in hardware, following the same criterion. As a consequence, the cipher you just
analyzed has a latency of rt, and an area of ra. Do the following tweaks turns out to be more
efficient than the original cipher, i.e., have a lower area-time product?

• Strengthen the S-box: 1
32 maximum differential probability, 1

16 maximum linear bias,
+50% on the area of a single round, with no latency penalty.

• Perfect diffusion layer: a single bit change in the diffusion layer will change the input of
all the following S-Boxes. +25% on the area of a single round, +5% on the latency.

Solution:

(a) Given the properties of the cipher, the number of active boxes in its round will be
1 for the first round, 4 for the second and 16 for the third onwards. Computing a
conservative estimate for the differential probability after the third round yields 2−3×
(2−3)4×(2−3)16 = 2−63, in turn implying the need for 263 plaintext-ciphertext pairs to

2/6

perform differential cryptanalysis on the cipher. Adding a round beyond the third adds
a factor 2−48 to the differential probability, in turn implying that a differential after the
fifth round will be the first one with a probability smaller than 2−128. As a consequence,
to prevent differential cryptanalysis, r = 5 + 1 is sufficient. Computing the linear bias
for the first three rounds yields 2−2 × (2−2)4 × (2−2)16 × 221−1 = 2−42+20 = 2−22.
This in turn results in the need of (2−22)−2 = 244 plaintext and ciphertext pairs being
needed to break a cipher with 3 + 1 rounds with linear cryptanalysis. Adding a round
provides a 2 × 2−32 = 2−31 factor on the linear bias. As a consequence, the cipher
needs to be 5 + 1 rounds long to resist linear cryptanalysis.

(b) The area-time cost of the original cipher is 6rart. Strengthening the S-Box results
in a 2−5 × (2−5)4 × (2−5)16 = 2−105 differential probability and a 2−4 × (2−4)4 ×
(2−4)16×221−1 = 2−84+20 = 2−62 linear bias after the third round, requiring 2105 and
2124 plaintext-ciphertext pairs to perform the respective cryptanalyses. Adding a single
round contributes enough in both cases to make the cipher immune, in turn resulting in
r = 4 + 1 rounds. The area-time cost of the cipher will thus be 5× 1.5× 1 = 7.5rtra
Changing the diffusion layer yields a 2−3 × (2−3)16 × (2−5)16 = 2−99 differential
probability and a 2−2×(2−2)16×(2−2)16×221−1 = 2−66+20 = 2−46 linear bias after the
third round, requiring 299 and 292 plaintext-ciphertext pairs to perform the respective
cryptanalyses. Adding a round is enough to ward off both linear and differential
cryptanalyses (2154 and 2147 ptx-ctx pairs needed, respectively). The total length of the
cipher is thus 4+1 rounds, yielding an area-time cost of 5×1.25×1.05 = 6.5625rtra.
As a consequence, the original cipher, despite having an extra round is still the most
efficient solution, followed by the alteration to the diffusion layer and, finally, the
strengthened S-box version.

Question 3 [8 pts]
Consider the cyclic group G=(Z∗41, ·).

(a) List the subgroups of G (both proper and trivial) showing for each of them the order and one
generator.

(b) Given the following discrete logarithms, x0, x1, state if each one of them exists, motivating
your answer and compute them.

x0 ≡ logD2((−1)40
3−1)

x1 ≡ logD4(2)

(d) Describe how to properly choose the parameters of the (Ephemeral) Diffie-Hellman protocol
and point out the advantages of using it.

Solution:
(a) Let Hm denote the subgroup of order m.

H1 = 〈1〉,
H2 = 〈40〉,
H4 = 〈9〉,
H5 = 〈10〉 = 〈37〉,
H8 = 〈3〉 = 〈38〉,
H10 = 〈4〉 = 〈23〉,

3/6

H20 = 〈2〉 = 〈8〉,
H40 = 〈7〉.
Note: testing g=2 and g=3 as generators, allows to list all the subgroups H1−−H20

with at least one generator

(b) x0 ≡20 logD2((−1)40
3−1) ≡20 logD2((−1)40

3−1 mod 40) ≡20 − logD2(−1).
The logarithm exists, as the argument is a value of the subgroup generated by the
base (note that −1 belongs to the group since 220 ≡ 1, then (210)2 ≡ (−1)2 ≡ 1.
x0 ≡20 − logD2(2

10) ≡20 −10 ≡20 10
(Alternate method: apply DLog finding algorithm)

x1 ≡10 logD4(2) does not exists.
The base and the argument belongs to separate subgroups
(4x ≡41 2 ⇒ 22x ≡41 2 ⇒ 2x ≡40 1, and the inverse of 2 does not exist as
gcd(2, 40)6=1)

(c) see lectures...

Question 4 [4 pts]
Consider the finite field F34

(a) Write the number of irreducible and primitive polynomials

(b) Verify that f1(x)=x4+x−1∈F3[x] is primitive and show each of its roots in F34 .

Solution:
(a) N1(3)=3, N2(3)=32−3

2 =3, 34=N1(3)+2N2(3)+4N4(3) ⇒ N4(3)=81−3−6
4 =18.

n=34−1=80=24 · 5. ϕ(n)=32. M4(3)=ϕ(n)
4 =8.

(b) Assume f(x) to be primitive, and let α∈F34\F3 be a root of f(x).
α4≡−α+1.

n=|F∗34 |=80=24 · 5.

α2 6≡ 1, ok
α4 ≡ −α+ 1 6≡ 1, ok
α5 ≡ −α2 + α 6≡ 1, ok
α8 ≡ α5 · α3 ≡ −α5 + α4 ≡ α2 − α− α+ 1 ≡ α2 + α+ 1 6≡ 1, ok
α10 ≡ α8 · α2 ≡ α4 + α3 + α2 ≡ α3 + α2 − α+ 1 6≡ 1, ok
α16≡(α8)2≡−α3 + α− 1 6≡ 1, ok
α20 ≡ α16 · α4 ≡ · · · ≡ −α3 − α2 + α 6≡ 1, ok
α40 ≡ (α20)2 ≡ · · · ≡ −1 6≡ 1, ok

α is a generator (i.e., a primitive element), therefore f(x)∈F3[x] is a primitive poly-
nomial for F34 .

Question 5 [12 pts]

(a) Apply the Pollard’s ρ method to factorize the RSA modulus n = p · q = 1537.
(As a backup alternative, apply a “trivial division” strategy).

4/6

(b) Choose an admissible public exponent e between the values e=9dec and e=13dec and compute
the value of the corresponding RSA private key kpriv=(p, q, ϕ(n), d). Show every step of the
computation.

(c) Sign the message m=333dec∈Zn (without employing any padding scheme) through applying
the CRT. Describe each step of the procedure.

(d) A system administrator wants to set up the RSA cryptosystem in a network including U users,
and for doing so he decides to generate a pool of P prime numbers each 2048 bits long and
keeping 1<P<U2

2 . Subsequently, he draws pairs of numbers from such a pool to set up the
public moduli. The public exponent is assumed to be the same for every user and equal
to e=216 + 1, while the secret parameters are computed knowing the factorization of each
modulus.

Discuss whether the aforementioned procedure is secure or not, justifying your answer.

(e) Assume to work into the Montgomery domain: (Z̃N ,+,×), N=22

• Show the definition of the Montgomery Multiplication and explain the advantages of
applying it for implementing the RSA cryptosystem.

• Compute the Montgomery multiplication C=A×B mod N , where A=19dec and B=16dec
are values in the Montgomery domain, assuming a binary encoding of the operands

Solution:

(a) see lectures... p = 29, q = 53

(b) ϕ(n)=28 · 52=1456=24 · 7 · 13, gcd(ϕ(n), 9)=1, and gcd(ϕ(n), 13) 6=1, ⇒ e=9∈Z∗ϕ(n)
d=eϕ(ϕ(n))−1 mod ϕ(n)≡14569

576−1≡1456 9575≡14569
〈1000111111〉2≡1456· · · ≡1456809.

(c) s ≡1537 333809{
xp ≡29 (333 mod 29)809 mod 28 ≡29 1425 ≡29 21
xq ≡53 (333 mod 53)809 mod 52 ≡53 1529 ≡53 36

q−1 mod p = 53−1 ≡29 24−1 ≡ 29 · · · ≡29 23.
p−1 mod q = 29−1 ≡53 29−1 ≡ 53 · · · ≡53 11.
s ≡n (q−1 mod p) ·q ·xp +(p−1 mod q) ·p ·xq ≡1537 23 ·53 ·21+11 ·29 ·36 ≡1537 195.

(d) see lectures ...

(e) • see lectures...

• N = 22 is an even number, the Montgomery radix R cannot be a power of 2, as
the Montgomery product requires that N and R be relatively prime!

However, it is possible to partition an RSA computation (as well as a modular
multiplication) into two modular operations with respect to the prime factors of
the user’s modulus. Let N be factored such that N = q · 2l, with q odd.
By the application of the CRT the computation c ≡N me is split up into{
c ≡q c1 ≡q m

e

c ≡2l c2 ≡2l m
e

and the result obtained with the CRT formula: c ≡N c1 + (c2− c1)(q−1 mod 2l).

5/6

The computation of c1 can be performed using the Montgomery algorithm since
q is odd, while the computation of c2 can be performed even more easily, since it
involves arithmetic modulo 2l.

6/6

