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Question 1 [6 pts]
Alice and Bob wish to use a block cipher in either CBC or CTR mode of operation for exchanging
encrypted data. An (active) adversary is able to intercept and change messages sent between Alice
and Bob. Consider the following scenarios.

(a) In some messages sent by Bob, it is the case that the last block is a randomly generated
secret key. For the two modes, establish whether the adversary can corrupt the transmitted
messages, so that Alice receives a message that looks good after decryption, but contains the
wrong key.

(b) In some messages sent by Bob, the adversary may know the first block M1 and want to replace
it by another block A1 of his choice, leaving the rest of the message unchanged. Show that
the adversary can achieve this if CTR mode of operation is employed. Do you think he can
do it also with the CBC mode?

Question 2 [2 pts]
Consider a public-key based authentication procedure on an SSH server.

(a) Is it sensible to disable DSA keypairs to perform SSH user authentication, out of the concern
that the SSH server may be running on a platform endowed with a relatively poor random
number generator? Justify your answer coincisely but effectively.

(b) Is it possible to employ DSA as the only public key algorithm in an SSH authentication
procedure (connection to established login)?

Question 3 [6 pts]

(a) Consider the cyclic group (Z∗
25, ·). Compute the cardinality of the group, the number of its

generators and exhibit at least one generator for each of its subgroups

(b) Consider the group (Z∗
45, ·). Determine if the multiplicative inverses of x=4 and y=6 exist and

compute their values.

(c) Consider the finite field F∗
53 . Determine if f(x)=x3−x−1∈F5[x] is a primitive polynomial and

show all its roots.
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Question 4 [6 pts]
Consider the elliptic curve E(F5): y2=x3−x.

(a) Find the order of the group of points lying on E(F5), and the number of its generators.

(b) Compute Q=[9]P, with P=(2, 1), showing each step of the computation.

(c) Explain the advantages of elliptic curve cryptosystems and describe the operations of the
Elliptic Curve ElGamal encryption primitive.

Question 5 [12 pts]

(a) Consider the RSA modulus n = p · q = 133 = 7 · 19

• Apply the Miller-Rabin primality test to the factor p employing as bases a = 2, b = 3.

• Given the public exponent e=7, compute the value of the RSA private key,
kpriv=(p, q, ϕ(n), d) specifying every step of the computation.

• Apply a Square & Multiply strategy to sign the message m=101 mod n employing a
radix-4 encoding of the exponent, subsequently apply the CRT to sign again the same
message (showing every step of the computation).

(b) Discuss working principles of the Montgomery Multiplication.

(c) Show how to implement the operations of the Diffie-Hellman protocol at each endpoint of the
communication, employing the Montgomery multiplication primitive. Show a pseudo-code of
the proposed implementation.

(d) Assume to work into the Montgomery domain: (Z̃n,+,×), n = 27. Compute the multiplication
between the following two values: Ã = 16dec and B̃ = 11dec, assuming a binary encoding of
the operands and showing every step of the procedure.
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