
Cryptography and Architectures for Computer Security
Exam Code: 095947 (old 090959), A.Y. 2016–2017, Semester: 2

Prof. G. Pelosi

July 5th, 2017 – Exam Session

Name: . Surname: .

Student ID: . Signature: .

Time: 2h:30’. Use of textbooks, notes, or Internet connected devices (including smart-
phones) is not allowed. The usage of simple calculators is allowed. Prior to turn in
your paper, write your name on any additional sheet and sign it.

Question 1 [9 pts]

(a) CBC-MAC works as the classic Cipher Block Chaining (CBC) mode of operation for encryption,
with the only difference that the Initialization Vector (IV) must be a fixed value (usually zero),
while the outputs consists of a single block – which is last block of the CBC-ciphertext.

Given a generic block cipher and a plaintext message m, explain why the composition of the
following authenticated ciphertext does not provide message integrity.

C ← CBC-Enck(m||MACk(m))

where CBC-Enck(·) denotes the CBC-encryption mode of a block cipher encryption primitive
Enck(·), while MACk(m) denotes a MAC-CBC computation performed with the same key k.

(b) Compare the security guarantees of the following authenticated encryption procedures.

C ← ModeOfOperation-Enck1(m||MACk2(m)), with k1 6= k2
C ← ModeOfOperation-Enck1(m||Signaturekpriv (hash(m)))

where ModeOfOperation-Enc is a primitive executing the encryption mode of a block cipher,
MAC is a generic Message Authentication Code, and Signature is a generic public-key signature
scheme.

(c) Public-key algorithms are usually used for encrypting short messages. But if we need to encrypt
a longer message we can split it into blocks, use RSA for each block and then use a mode of
operation to compute the ciphertext.
Which of the two modes between CBC and CTR would you recommend in such a situation?
Why?

Solution:

1/6

(a) The decryption equation of the CBC mode of operation is: mi=Deck(ci)⊕ci−1. A
corrupted ci implies that mi and mi+1 will be wrongly decrypted; however, mi+2 does
not depend on ci and will be decrypted correctly. As the MACk primitive keeps only
the last ciphertext block, the proposed scheme does not guarantee integrity of the
message.

More in detail, we can do the following observations.

Given a message m←〈m1,m2, . . . ,mt〉 as a sequence of t blocks, the MAC-CBC digest
is computed as:

c0 ← IV

ci ← Enck(ci−1 ⊕mi), 1 ≤ i ≤ t

Thus, MACk(m)=ct.

The CBC-encryption transformation takes as input the t+1 blocks:
m1, . . . ,mt, MACk(〈m1,m2, . . . ,mt〉)=ct, and computes the sequence of ciphertext
blocks as:

c0 ← IV

ci ← Enck(ci−1 ⊕mi), 1 ≤ i ≤ t
ct+1 ← Enck(ct ⊕ MACk(〈m1,m2, . . . ,mt〉)) = Enck(ct ⊕ ct) = Enck(0)

The last block of every ciphertext will always be equal to Enck(0), irrespectively of al-
terations to other blocks. Indeed, assuming that the ciphertext blocks c0, c1, . . . , ct, ct+1

are altered as c′0, c′1, . . . , c
′
t−1, c

′
t, ct+1, the receiver will derive the message m′ as:

m′i ← Deck(c
′
i)⊕ c′i−1, 1 ≤ i ≤ t

m′t+1 ← Deck(ct+1)⊕ c′t = 0⊕ c′t = c′t

To verify the authenticity of the received message, the receiver must check if

m′t+1
?
=MACk (〈m′1, . . . ,m′t〉). To this end he will recompute the MAC-CBC digest,

obtaining: MACk (〈m′1, . . . ,m′t〉)=c′t=m′t+1, thus he will consider the received message
as authentic.

(b) see lectures . . .

(c) Counter mode is unusable, since here decryption is the same as encryption and anyone
can encrypt messages, using the receiver’s public key. Hence anyone intercepting a
ciphertext can decrypt it. CBC mode does not have this disadvantage, since it uses
the decryption function.

Question 2 [8 pts]
Consider the ring of polynomials F2[x] in the unknown x.

(a) Is π(x) = x4 + x+ 1 irreducible? Is it primitive? Prove explicitly your answer.

(b) Representing F24 as F2[x]/π(x), you are planning to design a 4× 4 bits S-BOX, which can be
described in compact form considering the four input bits 〈a3, a2, a1, a0〉 as the coefficients
of an element of F24 , i.e., a(x) = a3x

3 + a2x
2 + a1x

1 + a0. Justify which one between the
following three choices is the best one for the S-BOX function, taking into account their
resistance to linear and differential cryptanalyses:

2/6

• SBOX-1(a) = a4

• SBOX-2(a) = a3 + a+ 1

• SBOX-3(a) = a16

(c) Complete SBOX-4(a), writing down its complete representation in the lookup table below.

in 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
out 0001 0001 0111 0111 0110 0110 0000 0000

To this end,you may find useful the following equalities:
x4 = x+ 1
x5 = x2 + x
x6 = x3 + x2

Let 〈b3, b2, b1, b0〉 be the output bits of the S-BOX above corresponding to the input 〈a3, a2, a1, a0〉.
Compute the linear bias for the expression a2 ⊕ a0 = b3 ⊕ b0.
Compute the probability of the differential (∆a,∆b) = (0001, 0011) and of the differential
(∆a,∆b) = (0001, 0000).

Solution:

(a) π(x) is primitive, and thus irreducible.

(b) • SBOX-1(a) = a4 is not a good choice, as it is an iteration of a square function
– which is indeed linear – and not a good candidate for an S-BOX. More in
detail: if a(x) = a3x

3 + a2x
2 + a1x

1 + a0; any of the scalar coefficients of a(x)2

can be computed as a linear combination of the ones of a(x), i.e.: a(x)2 ≡π(x)
a3x

6 + a2x
4 + a1x

2 + a0 ≡π(x) a3x3 + (a3 + a1)x
2 + a2x + a2 + a0. Similarly,

it is easy to infer that also the coefficients of a(x)4 will be computed as a linear
combination of the ones of a(x)2 and in turn of the ones of a(x).

• SBOX-3(a) = a16 is an even worse choice, since it is the identity function.

• SBOX-2(a) = a3 +a+ 1 is non-linear (any coefficient of a(x)3 is composed by a
sum of products, where each product is obtained multiplying subsets of coefficients
of a(x) – thus, it is definitely better than the other ones.

(c) Here is the full S-Box:

in 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
out 0001 0001 0111 0111 0110 0110 0000 0000 0101 0101 0011 0011 0010 0010 0100 0100

Running all the computations we find that the linear bias for a2⊕a0 = b3⊕b0 is 0, while
the differential probabilities for (∆a,∆b) = (0001, 0011) and (∆a,∆b) = (0001, 0000)
are 0 and 1 respectively.
Therefore, we can conclude that also SBOX-4(a) is a linear S-BOX.
In particular, it is possible to infer that SBOX-4(a) = a2 + a + 1 or, equivalently,
SBOX-4(〈a3, a2, a1, a0〉) = 〈0, a3 + a2 + a1, a2 + a1, a2 + 1〉.

3/6

Question 3 [4 pts]
Consider the cyclic group (G, ·)=〈g〉=(Z∗p, ·), with p a large prime, and g a generator, and analyze
the following digital signature scheme. The private key is defined as kpriv=s ∈ {0, 1, . . . , p−1}, while
the public key is defined as kpub=gs ∈ G.

To sign a messagem∈{0, 1}∗, one first computes the digest h=H(m)∈(Z∗p−1, ·) for some, properly
defined, hash function. Obs.: Z∗p−1={a | 1≤ a≤ p−1 ∧ gcd(a, p−1)=1}.

The signature σ ∈ G is computed as σ = gs·h
−1

, while the signature verification procedure executes the

following check: σh ?
= kpub.

(a) Will correct signatures be accepted?

(b) Is it unfeasible to sign an arbitrary message without knowing the private key?

Solution:

(a) Yes! The signature verification procedure will accept a correct signature:
(
gs·h

−1
)h

=gs=kpub

(b) No! Given an arbitrary message m1, anyone can hash it, h1=H(m1), compute the inverse
h−11 mod (p−1), and use the public key of a legitimate user to sign the message m1 on

her behalf as follows: k
h−1
1

pub=(gs)
h−1
1 =gs·h

−1
1 . Note: the order of the group is a composite

number. Thus, the mathematical security of the scheme depends on the efficiency of the
Poligh-Hellmann attack.

Question 4 [14 pts]

(a) Apply the Pollard’s ρ method to factorize the RSA modulus n = p · q = 899.
Assume f(x) = x2 + 1 mod n as the “random-walking” function.
Show every step of the computation.
(As a backup alternative, apply a “trivial division” strategy).

(b) Describe two primality tests.

(c) Choose an admissible public exponent e between the values e=21dec and e=143dec and compute the
value of the corresponding RSA private key kpriv=(p, q, ϕ(n), d). Show every step of the computation.

(d) Sign the message m=898dec∈Zn (without employing any padding scheme) through applying the CRT.
Describe each step of the procedure.

(e) Consider a double RSA encryption using two public keys kpub−1, kpub−2 with the same modulus N and
two distinct public exponents (namely, e1 and e2, gcd(e1, e2) 6= 1). Denote as d1 and d2 the private
exponents corresponding to the the first and the second public key, respectively. A message m is
encrypted using the RSA encryption transformation with the first public exponent e1, and the result
is encrypted again using e2.
Does this scheme increase the security of the RSA cryptoscheme? Please, explain the reasons under-
lying your answer.

(f) Assume to work into the Montgomery domain: (Z̃N ,+,×), N=21

• Compute the following Montgomery multiplication assuming a binary encoding of the operands.
C̃←Ã×B̃ mod N , with Ã=16dec and B̃=15dec

Solution:

(a) see lectures ... q=29, p=31

(b) see lectures ...

4/6

(c) ϕ(n)=840=23·3·5·7, therefore the admissible value for the public exponent is e=143dec∈Z∗ϕ(n).

Applying the Extended Euclidean Algorithm: 1=gcd(ϕ(n), e)=gcd(840, 143)

(i)


u ← (840, 1, 0)
v ← (143, 0, 1)

(ii)


q ←

⌊
840
143

⌋
= 5

w ← (125, 1,−5)
u ← (143, 0, 1)
v ← (125, 1,−5)

(iii)


q ←

⌊
143
125

⌋
= 1

w ← (18,−1, 6)
u ← (125, 1,−5)
v ← (18,−1, 6)

(iv)


q ←

⌊
125
18

⌋
= 6

w ← (17, 7,−41)
u ← (18,−1, 6)
v ← (17, 7,−41)

(v)


q ←

⌊
18
17

⌋
= 1

w ← (1,−8, 47)
u ← (17, 7,−41)
v ← (1,−8, 47)

(vi)


q ←

⌊
17
1

⌋
= 17

w ← (0, ..., ...)
u ← (1,−8,47)
v ← (0, ..., ...)

1=gcd(ϕ(n), e)=gcd(840, 143)=840·(−8)+143·(47) ⇒ d≡ϕ(n)e
−1≡840143−1≡84047.

kpriv=(31, 29, 840, 47).

(d) s=md mod n=89847dec mod 899≡899(−1)47=−1.

Applying the CRT:{
mp ≡p md mod p−1

mq ≡q md mod q−1

{
mp ≡31 (−1)23 ≡31 −1 ≡31 30
mq ≡29 (−1)3 ≡29 −1 ≡29 28

m ≡n q·(q−1 mod p)·mp + 31·(p−1 mod q)·mq

m ≡899 29·(29−1 mod 31)·30 + 31·(31−1 mod 29)·28
m ≡899 29·((−2)−1 mod 31)·30 + 31·(2−1 mod 29)·28
m ≡899 29·(−16)·30 + 31·15·28 = −13920+13020 ≡899 −900 ≡899 −1.

(e) The general argument against double encryption is that it is subject to a meet-in-the-middle
attack, which has time complexity similar to that of a single brute force attack. In the particular
case of the RSA encryption, double encryption is also not useful at all, since the double
encryption is equivalent to a single RSA encryption with public key e=e1·e2 and private key
d=d1·d2.

(f) see at the next page

5/6

(f) R = 2b s.t. R>N , gcd(R,N)=1 ⇒ b=dlog2Ne=dlog2 21e=5, R = 25 = 32
R′ = R−1 mod N = 32−1 mod 21 ≡21 11−1 ≡21 2
N ′ = −N−1 mod R = (−21)−1 mod 32 ≡32 11−1 ≡32 3
N ′ = 〈N ′2, N ′1, N ′0〉2 = 〈011〉2. N ′0 = 1

B̃ = 〈B̃4B̃3B̃2B̃1B̃0〉2 = 〈01111〉2,

Ã = 〈Ã4Ã3Ã2Ã1Ã0〉2 = 〈10000〉2

00000 +

00000 Ã0 · B̃ = 0 · 〈10101〉2
+

00000 t ·N = (N ′0x0) ·N = 〈00000〉2
00000 >>1
00000 end of the 1st iteration
00000 +

00000 Ã1 · B̃ = 0 · 〈10101〉2
+

00000 t ·N = (N ′0x0) ·N = 〈00000〉2
00000 >>1
00000 end of the 2nd iteration
00000 +

00000 Ã1 · B̃ = 0 · 〈10101〉2
+

00000 t ·N = (N ′0x0) ·N = 〈00000〉2
00000 >>1
00000 end of the 3rd iteration
00000 +

00000 Ã1 · B̃ = 0 · 〈10101〉2
+

00000 t ·N = (N ′0x0) ·N = 〈00000〉2
00000 >>1
00000 end of the 4th iteration
00000 +

01111 Ã4 · B̃ = 0 · 〈10101〉2
+

10101 t ·N = (N ′0x0) ·N = 〈10101〉2
100100 >>1
10010 end of the 5th iteration

C̃ = 10010

C̃ = 〈10010〉2 = 18dec < N ⇒ no final substraction!

Validation: C̃ = MonPro(16, 15) = 16 · 15 · 2 mod 21 = 480 mod 21 = 18.

6/6

