Cryptography and Architectures for Computer Security
Exam Code: 095947 (old 090959), A.Y. 20162017, Semester: 2

Prof. G. Pelosi
February 23rd, 2018 — Exam Session

Time: 2h:30°. Use of textbooks, notes, or Internet connected devices (including smart-
phones) is not allowed. The usage of simple calculators is allowed. Prior to turn in
your paper, write your name on any additional sheet and sign it.

Question 1 [3 pts]
Why, in general, do practical public key cipher systems need larger block and key sizes than
symmetric cipher systems?

Solution:
see lectures...

Question 2 [3 pts]

A One Time Pad encryptor machine trying to cope with broken random number generators does
not encrypt the message with a keystream equal to either a sequence of Os or a sequence of 1s. Is
this enhancement affecting positively the security of the system? Motivate your answer.

Solution:
see lectures...

Question 3 [4 pts]
The post office of Lytia employs a digital authentication system to check the authenticity of package
delivery electronic receipts.

(a) A first system relies on the digest of a custom keyed SHA-2-256 hash function, obtained from
the original SHA-2-256 design permuting the order of the 8 32-bit initialization constants
with a secret permutation.

Argue for or against the possibility of forging these keyed digests.

(b) A second system relies on the digest of a standard SHA-2-512 hash function fed with the
concatenation of a 256-bit secret key (shared among the post offices) and a message.
Argue for or against the possibility of forging these keyed digests. (Assume that the disclosure
of the secret key is not an option)

Solution:
see lectures...
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Question 4 [6 pts]
Consider an elliptic curve cryptosystem defined over the elliptic curve
E(F13) with equation y? = 23 + 2 over Fy3.

(a) What is the order of the additive group (E(FFi3),+)?
(b) What is the sum of the points (1,4) and (2,6)?

(c) To choose a safe curve for an ECC implementation, what are the desirable properties of the
order of the curve?

Solution:

(a) [E(F3)| =19

z,y o[1] 234567 [8]9o]10]11]12
23 4+ 2mod 13: | 2 10[3[1]wl1wol7]7[3][1]7]1
y% mod 13 o/1] 4 ]ol3]|12]10]10]12[3] 9] 41
Punti sulla curva
(1,4) | (1.9
(2,6) | (2,7)
(3.4) | (3.9
(4, 1) | (4, 12)
(5,6) | (5 7)
(6,6) | (6,7)
(9,4) | (9,9)
(10, 1) | (10, 12)
(12, 1) | (12, 12)

(b) (1,4> + (276) = (179)

(c) see lectures...

Question 5 [6 pts]
For the prime p = 503, the value g = 5 generates the full group (Z;, ).

(a) Encrypt the message m = 42 using the (school-book) ElGamal cryptosystem, employing
[=9€Z;,_, as the value returned by a random number generator.
Let us denote as s € Z,_1 the secret key value, and consider the public key to be equal to
kpws = (1, 9,9°) = (502, 5, 383).

(b) Explain how an attacker who intercepts an ElGamal ciphertext and somehow knows the ran-
dom value [, is able to decrypt, without knowledge of the private key.

(c) Assume that the system random number generator is stuck at a fixed randomly generated
value [, and assume that an adversary is able to obtain a valid plaintext-ciphertext pair

my1,c1. Show that in such a scenario, the attacker is able to decrypt any ciphertext she comes
by.
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Solution:

(sketch)

ciphertext: ¢ = (v,0) = (479, 216);
v = ¢' mod p = 479;

§=m-(g°)! mod p = 216

see lectures...

Question 6 [12 pts]

(a) Describe the Fermat primality test and the Miller-Rabin primality test.
(b) Apply the Pollard’s p method® to factor the RSA public modulus n = p - ¢ = 851
(c) Compute the value of the RSA private key, assuming a public exponent ey = 5.

(d) Assume that a smart-card contains an RSA co-processor with an hardcoded public modulus
n = 851, and a school-book implementation (no OAEP), leaving the choice of the public
exponent to the user. Eve obtains two encryptions of the same message m with the following
two public exponents: ex =5, eg = 7.

Can she derive the plaintext message?
Motivate your answer and show every step of the computation.

(e) Assume to use the Montgomery arithmetics for a software implementation of an RSA cryp-
tosystem. Show the pseudo-code of the encryption and decryption (with CRT) primitives,
defining all the appropriate sub-routines.

What are theoretical speedups of these implementations with respect to the school-book
implementations of the encryption and decryption functions?

Solution:

(sketch)

n = 851;

p =23, q =37,

o(n) =792 =12%.3%.11,

o(p(n)) =4-6-10 = 240;

d= efl(go(n))—l mod gp(n) =792 5239 =792 ... =792 317,

las a back-up strategy you can apply a trivial division method
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