

# Cryptography and Architectures for Computer Security

Exam Code: 095947 (old 090959), A.Y. 2016–2017, Semester: 2

### Prof. G. Pelosi

## February 23rd, 2018 – Exam Session

| Name:       | Surname:   |
|-------------|------------|
| Student ID: | Signature: |

Time: 2h:30'. Use of textbooks, notes, or Internet connected devices (including smart-phones) is not allowed. The usage of simple calculators is allowed. Prior to turn in your paper, write your name on any additional sheet and sign it.

# Question 1 [3 pts]

Why, in general, do practical public key cipher systems need larger block and key sizes than symmetric cipher systems?

Solution:

see lectures...

## Question 2 [3 pts]

A One Time Pad encryptor machine trying to cope with broken random number generators does not encrypt the message with a keystream equal to either a sequence of 0s or a sequence of 1s. Is this enhancement affecting positively the security of the system? Motivate your answer.

Solution:

see lectures...

#### Question 3 [4 pts]

The post office of Lytia employs a digital authentication system to check the authenticity of package delivery electronic receipts.

- (a) A first system relies on the digest of a custom keyed SHA-2-256 hash function, obtained from the original SHA-2-256 design permuting the order of the 8 32-bit initialization constants with a secret permutation.
  - Argue for or against the possibility of forging these keyed digests.
- (b) A second system relies on the digest of a standard SHA-2-512 hash function fed with the concatenation of a 256-bit secret key (shared among the post offices) and a message.

  Argue for or against the possibility of forging these keyed digests. (Assume that the disclosure of the secret key is not an option)

Solution:

see lectures...

# Question 4 [6 pts]

Consider an elliptic curve cryptosystem defined over the elliptic curve  $\mathbb{E}(\mathbb{F}_{13})$  with equation  $y^2 = x^3 + 2$  over  $\mathbb{F}_{13}$ .

- (a) What is the order of the additive group  $(\mathbb{E}(\mathbb{F}_{13}), +)$ ?
- (b) What is the sum of the points (1,4) and (2,6)?
- (c) To choose a safe curve for an ECC implementation, what are the desirable properties of the order of the curve?

#### Solution:

(a) 
$$|\mathbb{E}(\mathbb{F}_{13})| = 19$$

| x, y                | 0 | 1 | 2  | 3 | 4 | 5  | 6  | 7  | 8  | 9 | 10 | 11 | 12 |
|---------------------|---|---|----|---|---|----|----|----|----|---|----|----|----|
| $x^3 + 2 \mod 13$ : | 2 | 3 | 10 | 3 | 1 | 10 | 10 | 7  | 7  | 3 | 1  | 7  | 1  |
| $y^2 \bmod 13$      | 0 | 1 | 4  | 9 | 3 | 12 | 10 | 10 | 12 | 3 | 9  | 4  | 1  |

| Punti sulla curva |          |  |  |  |  |  |  |
|-------------------|----------|--|--|--|--|--|--|
|                   |          |  |  |  |  |  |  |
| (1, 4)            | (1, 9)   |  |  |  |  |  |  |
| (2, 6)            | (2, 7)   |  |  |  |  |  |  |
| (3, 4)            | (3, 9)   |  |  |  |  |  |  |
| (4, 1)            | (4, 12)  |  |  |  |  |  |  |
| (5, 6)            | (5, 7)   |  |  |  |  |  |  |
| (6, 6)            | (6, 7)   |  |  |  |  |  |  |
| (9, 4)            | (9, 9)   |  |  |  |  |  |  |
| (10, 1)           | (10, 12) |  |  |  |  |  |  |
| (12, 1)           | (12, 12) |  |  |  |  |  |  |
|                   | 0        |  |  |  |  |  |  |

- **(b)** (1,4) + (2,6) = (1,9)
- (c) see lectures...

### Question 5 [6 pts]

For the prime p = 503, the value g = 5 generates the full group  $(\mathbb{Z}_p^*, \cdot)$ .

- (a) Encrypt the message m=42 using the (school-book) ElGamal cryptosystem, employing  $l=9\in\mathbb{Z}_{p-1}^*$  as the value returned by a random number generator. Let us denote as  $s\in\mathbb{Z}_{p-1}$  the secret key value, and consider the public key to be equal to  $k_{\text{pub}}=\langle n,g,g^s\rangle=\langle 502,5,383\rangle.$
- (b) Explain how an attacker who intercepts an ElGamal ciphertext and somehow knows the random value l, is able to decrypt, without knowledge of the private key.
- (c) Assume that the system random number generator is stuck at a fixed randomly generated value l, and assume that an adversary is able to obtain a valid plaintext-ciphertext pair  $m_1, c_1$ . Show that in such a scenario, the attacker is able to decrypt any ciphertext she comes by.

```
Solution: (sketch) ciphertext: c=\langle \gamma,\delta\rangle=\langle 479,216\rangle; \gamma=g^l \bmod p=479; \delta=m\cdot (g^s)^l \bmod p=216 see lectures...
```

## Question 6 [12 pts]

- (a) Describe the Fermat primality test and the Miller-Rabin primality test.
- (b) Apply the Pollard's  $\rho$  method<sup>1</sup> to factor the RSA public modulus  $n = p \cdot q = 851$
- (c) Compute the value of the RSA private key, assuming a public exponent  $e_{\rm A}=5$ .
- (d) Assume that a smart-card contains an RSA co-processor with an hardcoded public modulus n=851, and a school-book implementation (no OAEP), leaving the choice of the public exponent to the user. Eve obtains two encryptions of the same message m with the following two public exponents:  $e_A=5$ ,  $e_B=7$ .

Can she derive the plaintext message?

Motivate your answer and show every step of the computation.

(e) Assume to use the Montgomery arithmetics for a software implementation of an RSA cryptosystem. Show the pseudo-code of the encryption and decryption (with CRT) primitives, defining all the appropriate sub-routines.

What are theoretical speedups of these implementations with respect to the school-book implementations of the encryption and decryption functions?

```
Solution: (sketch) n=851; p=23,\ q=37; \varphi(n)=792=2^3\cdot 3^2\cdot 11; \varphi(\varphi(n))=4\cdot 6\cdot 10=240; d=e_A^{\varphi(\varphi(n))-1} \bmod \varphi(n)\equiv_{792} 5^{239}\equiv_{792} \ldots \equiv_{792} 317;
```

<sup>&</sup>lt;sup>1</sup>as a back-up strategy you can apply a trivial division method