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Question 1 [4 pts]
Consider the case of a per-file data-at-rest encryption, where a single block cipher key is employed
for every file.

(a) From a performance standpoint, which mode of operation would you choose between CBC and
CTR for encrypting/decrypting each file in the mentioned scenario?

(b) From a security standpoint, which mode of operation would you choose between CBC and
CTR? (Hint: Distinguish the case where the IVs of two files are different from the one where
they match...)

Solution:

(a) Seeking a block and decrypting it is equally efficient both using CBC and CTR. However,
small modifications to a CBC encrypted file will require the re-encryption of the blocks
following the modified one. This does not happen in CTR where it is possible to modify
selectively only the intended block.

(b) If two files have different (unique and unpredictable) IVs, both the CBC and CTR
modes of operation are ok. If the IVs of two distinct files match,

• a CBC encryption will allow to distinguish the longest common prefix between
the plaintexts, checking what is the longest number of equal blocks between the
ciphertexts starting from the IVs.

• a CRT encryption will allow to obtain the unencrypted difference (i.e., the xor)
between the two plaintexts, simply computing the xor between the ciphertexts.
This is particularly critical if one block in either one of the two files is zero-filled
as the result of the difference will reveal the other block plaintext.

Question 2 [4 pts]
Consider the following two password hashing schemes:

1. Accept a seven lowercase alphabetic character password. Draw a random salt s, 32b in length,
compute h = SHA-2-256(s||password||s). Store h||s.

1/4



2. Accept seven lowercase alphabetic strings drawn at random from an English dictionary with
65536 terms. Compute h = SHA-2-256(s1||s2||s3||s4||s5||s6||s7) and store h

Argue which one of the two password schemes can be fruitfully attacked with a time to memory
tradeoff such as a rainbow table. For the said scheme, compute the chain length of a rainbow
table, assuming to have 16 GiB of available storage, and employing a storage strategy which has
no overhead save for storing the table data (i.e., omit any storage requirement for the indexing).
Considering the time to compute SHA-2-256 to be 100µs, and the time to perform a table lookup
to be 1µs, compute the worst case password finding time.

Solution:
Considering the effective password space of the two schemes, taking into account the pres-
ence of the salt, we have that:

1. Scheme 1 has an effective password space of 27 log2(26)+32 ≈ 265.

2. Scheme 2 has an effective password space of 27 log2(65536) = 2112

We thus have that the second scheme cannot be attacked via TMTO as the effort of building
the rainbow tables (i.e. 2112 password hash computations) is not practically feasible.

For the first scheme, computing ≈ 265 hashes is feasible. Willing to employ 16 GiB to store
the rainbow table, consider the fact that an entry of the table is as large as two SHA-2-256
digests, i.e. 32 · 2 = 64B. The table will thus be able to store 234

26
= 232 chains. Each one

of such chains will have to span a portion of the keyspace equal to 265

232
= 233 passwords,

thus the chain will be 233 hashes long. The worst case password finding time is given by
a sequence of alternated password hashing and rainbow table lookup as long as the table
itself. We thus have that the worst-case password finding time is 233 · 101 · 10−16s which is
approximately 223 · 101s or 26.8 years

Question 3 [3 pts]
Considering the Tor transport anonymity protocol:

1. What is the working principle providing transport anonimity in the Tor relay network?

2. When is a malicious relay able to selectively drop the relay cells belonging to the circuit of a
specific client connected to the Tor network?

Solution:

• See lectures.

• Only in case it is the entry node of the said client. Indeed, in all the other cases, the
relay will only see opaque relay cells without the possibility of determining their source.

Question 4 [10 pts]

(a) Consider an instance of the Diffie-Hellmann protocol with public parameters described as
follows: G ⊆ (Z∗73 , ·), G = 〈g〉. Compute the cardinality of the group, the number of its
generators and the number of subgroups.
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(b) Consider an instance of the Diffie-Hellmann protocol with public parameters described as
follows: G ⊆ (F∗73 , ·), G = 〈g〉. Compute the cardinality of the group, the number of its
generators and the number of subgroups.
Find the number of irreducible and primitive polynomials that can be employed to represent
the field elements.
Determine if f(x) = x3 − x− 1 ∈ F7[x] is reducible or not.

(c) Keeping into account the Pohlig-Hellman attack, which cyclic group between (Z∗73 , ·) and (F∗73 , ·)
is preferable?

Solution:

(a) |(Z∗343, ·)| = ϕ(343) = ϕ(73) = 73 − 72 = 294;
Num. of generators: ϕ(|(Z∗343, ·)|) = ϕ(ϕ(343)) = ϕ(294) = ϕ(2 · 3 · 72) =
(21 − 1) · (31 − 1) · (72 − 7) = 1 · 2 · 42 = 84.
Num. of proper divisors of |(Z∗343, ·)| = ϕ(343) = ϕ(73) = 294 is equal to 10 (i.e.,
2, 3, 6, 7, 14, 21, 42, 49, 98, 147); this value coincides with the number of proper
subgroups of (Z∗343, ·).

(b) |(F∗73 , ·)| = 73 − 1 = 342.
Num. of generators: ϕ(|F∗73 |) = ϕ(342) = ϕ(2 · 32 · 19) = 1 · 6 · 18 = 108,
Num. of proper divisors of |(F∗73 , ·)| = 342 = 2 · 32 · 19 is equal to 10 (i.e., 2, 3, 6, 9,
18, 19, 38, 57, 114, 171); this value coincides with the number of proper subgroups
of (F∗73 , ·).

Number of irreducible polynomials: N3(7) = 73−7
3 = 112.

Number of primitive polynomials: M3(7) = ϕ(342)
3 = 108

3 = 36.
f(x) = x3 − x − 1 ∈ F7[x] is reducible iif ∃ a ∈ {0, 1, 2, 3, 4, 5, 6} s.t. f(a) ≡7 0
(Ruffini’s Theorem).
f(0) ≡7 −1, f(1) ≡7 −1, f(2) ≡7 5, f(3) ≡7 2, f(4) ≡7 −4, f(5) ≡7 0.
The polynomial is reducible!
Indeed, f(x) = x3 − x− 1 = (x− 5) · (x2 + 5x+ 3).

(c) (see lectures)...the cyclic group must have a prime cardinality (properly sized) to pre-
vent the application of the Pohlig-Hellman attack...the factorization of the order of
(Z∗73 , ·) (i.e., |(Z∗343, ·)| = 294) is B = 8-smooth, while the factorization of the order
of (F∗73 , ·) (i.e., |(F∗73 , ·)| = 342) is B = 20-smooth.
Thus, keeping into account the computational complexity of the Pohlig-Hellman at-
tack, the latter group looks to be preferable to the former one.
Indeed, forsaking the fact that the cardinalities of the considered groups are not cryp-
tographically significant, we can apply the formula employed to express the computa-
tional complexity of the Pohlig-Hellman attack against a generic cyclic group G with
cardinality n =

∏s
i=1 p

ei
i ,

i.e.: O

(
s∑

i=1

e1 · (log2 pi +
√
pi)

)
= O

(
s ·max(e1, . . .) · (log2 n+

√
B)
)

,

and observe the following:
for the group (Z∗343, ·) we have 3·2·(log2(343)+

√
8) = 6·(8.42+2.83) ≈ 67 bit opera-

tions, while for the group (F∗73 , ·) we have 3·2·(log2(342)+
√

20) = 6·(8.41+4.47) ≈ 77
bit operations; which confirms the preference expressed above.

3/4



Question 5 [14 pts]

(a) Apply the Pollard’s ρ method to factorize the RSA modulus n = p · q = 851dec.
Assume f(x) = x2 + 1 mod n as the “random-walking” function. Show every step of the
computation. (As a backup alternative, apply a “trivial division” strategy).

(b) Describe the Pollard’s P − 1 factoring algorithms, pointing out its computational complexity.

(c) Given the values e1 = 3 · 5, e2 = 52 state which of them is an admissible public exponent,
motivating your answer. Show the value of the corresponding RSA public and private keys
kpub=(e, n), kpriv=(p, q, ϕ(n), d).

(d) Sign the message m=111dec∈Zn (without employing any padding scheme) through applying
the CRT. Describe each step of the procedure.

(e) Consider a schoolbook RSA cryptosystem employing the Montgomery multiplication as build-
ing block. Write down the pseudo code of both the encryption and the CRT-based decryption
transformations, pointing out their asymptotic computational complexities.

(f) Consider the modulus N = 23dec and the value A = 17dec. Assuming a binary encoding of the
operands and the smallest possible value for the Montgomery radix R

• compute the value Ã that is the result of mapping A into the Montgomery domain;

• apply the Montgomery multiplication algorithm to compute Ã2.

Show every step of the computations.

Solution:

(a) p = 23, q = 37, n = p · q = 851.

(b) see lectures . . .

(c) ϕ(n) = 792 = 23 · 32 · 11, e2 = 25dec ∈ Z∗ϕ(n), d ≡ϕ(n) e2
−1 = −95 ≡792 697, . . .;

(d) mp ≡23 111697 mod 22 ≡23 1915 ≡23 20,
mq ≡37 111697 mod 36 ≡37 013 ≡37 0,
s = q · (q−1 mod p) ·mp ≡851 37 · 5 · 20 ≡851 3700 ≡851 296dec.

(e) see lectures . . .

(f) N = 23, R = 32, RR′ −NN ′ = 1,
R′ = R−1 mod N = 18,
N ′ = −N−1 mod R = −7 mod 32 = 25, . . .,
Ã = MMul(A,R2) = A ·R2 ·R−1 mod N = 17 · 32 ≡23 15,
Ã2 = MMul(Ã, Ã) = 15 · 15 · 18 mod 23 = 2, . . . see lectures for the execution trace
of the Montgomery multiplication with binary encoded operands.
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