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Question1 [3 pts]
Consider the TLS protocol answer the following questions:
(a) Can an active attacker break the confidentiality property of a TLS connection if the ciphersuites

accepted by both the client and the server include insecure choices? How?

(b) Consider the TLS ciphersuites TLS DHE ECDSA WITH AES 256 SHA256, using an ECDSA key-
pair relying on the P-521 curve and TLS DHE ECDSA WITH AES 192 SHA384 using an ECDSA
keypair relying on the P-384 curve. Which one provides the most homogeneous security
margin across all the primitives?

Solution:

(a) An active attacker may tamper with the TLS connection establishment forging the
ServerHello message, which is sent in cleartext, and contains the ciphersuite choice.
Tampering with it allows him to downgrade the connection to a TLS * WITH NULL *

ciphersuite eliminating the symmetric encryption altogether, or moving to an export-
grade ciphersuite which is breakable computationally.

(b) The second one. Indeed, all the involved parameter choices require around 2192 op-
erations to be broken, while obtaining a collision on SHA-2-256 requires “only” 2128

operations, versus the 2256 required to compromise AES-256 or ECDSA on P-521.

Question 2 [5 pts]
Consider a password hashing scheme composed as follows: given a 7 printable ASCII (also known
as 7-bit ASCII) character password and a single byte salt, the concatenation of the password and
the salt is hashed 1024 times with SHA-2-512. The result is stored, together with the salt, as the
password hash.

(a) Considering a CPU able to compute 223 SHA-2-512 hashes per second, and the availability
of 128GiB of RAM, compute the chain length of a rainbow table aimed at breaking the
aforementioned password hashing scheme minimizing the computation time for a worst case
lookup. Calculate the time required to compute the rainbow table, not taking into account
the memory access time. Do not take into account the space required for the index or other
data structure required to access the table in O(1).
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(b) Patch the password hashing scheme adding enough salt so that the aforementioned attack
requires at least 2128 SHA-2-512 computations.

(c) Is it possible to find whether a user’s password is “password” followed by his date of birth
when employing your patched scheme?

Solution:

(a) Considering that a chain in the table is stored only as its beginning and end, that we
have 237B available, and that a SHA-2-512 digest is 64B long, we have that we can
store at most 237

64×2 = 230 chains. The password space to be swept is 2(7×7)+8 = 257.

We thus have that a chain will be 257

230
= 227 hashes long. Computing the entire table

will require 257×210 SHA-2-512 computations: at a rate of 223 SHA-2-512 per second
this will take 234 seconds or around 200k core hours.

(b) Since computing the rainbow table requires a computational effort in the same order
of magnitude as an single exhaustive search, and the password space is 249 elements
wide, a 79 bit salt is enough to force the attacker to compute the required number of
SHA-2-512.

(c) Yes. Considering the computing power of the single CPU above (213 password hashes
per second) and the fact that reasonably valid birth dates are 365× 150 we have that

it is possible to test exhaustively all the said passwords in 365×150
213

≈ 216

213
= 8 seconds.

Question 3 [3 pts]
Describe the design principles of a stream cipher, mentioning its most common structures.

Solution:
see lectures...

Question 4 [5 pts]
Consider the finite field F24 .

(a) Compute the number of irreducible and primitive polynomials that can be employed to repre-
sent the elements of the field.

(b) Exhibit the value of all primitive polynomials, justifying your answer.

Solution:

(a) 24 = 4 ·N4(2) + 2 ·N2(2) + 1 ·N1(2)
N1(2) = 2;

N2(2) = 22−2
2 = 1;

N4(2) = 16− 2 · 1− 1 · 24 = 3

ϕ(24 − 1) = 2 · 4 = 8;
M4(2) = 8

4 = 2

(b) The irreducible polynomials that can be employed to represent the elements of the
field are: f0(x) = x4 + x3 + x2 + x + 1, f1(x) = x4 + x3 + 1, f2(x) = x4 + x2 + 1,
f3(x) = x4 + x+ 1.
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If α is a generator of F∗24 , and f(x) ∈ F2[x], with deg(f(x)) = 4, is irreducible and
and f(α) = 0 then f(x) is primitive. Given n = |F∗24 | = 15 = 3 · 5, if f(x) is primitive
it must hold that α3 6≡ 1 (trivially true as deg(f(x)) = 4), α5 6≡ 1, α15 ≡ 1.

Considering f(x) = f0(x) = x4 + x3 + x2 + x+ 1,
α5 = α · (x3 + x2 + x + 1) = . . . = α, therefore we can conclude that f0(x) is NOT
primitive (it could be irreducible but the question of the exercise does not ask us to
be more precise)

Considering f(x) = f1(x) = x4 + x3 + 1,
α5 = α · α4 ≡ α3 + α+ 1 6≡ 1 ok!;
α15 = (α4)3 · α3 = (α3 + 1)3 · α3 = (α9 + α6 + α3 + 1) · α3 = α12 + α9 + α6 + α3 =
(α3 + 1)3 + α9 + α6 + α3 = α9 + α6 + α3 + 1 + α9 + α6 + α3 = 1 ok!

Considering f(x) = f2(x) = x4 + x2 + 1,
α5 = α · α4 ≡ α3 + α 6≡ 1 ok!;
α15 = (α4)3 ·α3 = (α2+1)3 ·α3 = (α6+α4+α2+1)·α3 = (α4+α2+α4+α2+1)·α3 =
α3 NO! This means that f2(x) = x4 + x2 + 1 is NOT primitive!!!

Therefore, primitive polynomials for the field F24 are:
f1(x) = x4 + x3 + 1, and f3(x) = x4 + x+ 1.

We can note that as f2(x) = x4 +x2 + 1 = (x2 +x+ 1)2, it is clearly NOT irreducible
too, therefore the irreducible polynomials are:
f0(x) = x4 + x3 + x2 + x+ 1, f1(x) = x4 + x3 + 1, and f3(x) = x4 + x+ 1.

Question 5 [5 pts]

(a) Consider an instance of the Diffie-Hellmann protocol over the multiplicative groupG = (F∗112 , ·).
Considering the primitive polynomial f(x) = x2 + 1 ∈ F11[x], the elements of the field are
represented as first degree polynomials of the form θ1α+θ0 with θ0, θ1 ∈ F11, and α ∈ F112\F11

such that α2 ≡ −1.

State if the following discrete logarithms exists and, in the positive case, compute their values.

x1 = logDα(−1), x2 = logD1/α(−1)

(b) Many implementations of the Diffie-Hellman protocol assume to work in a subgroup G of the
multiplicative group (Zp, ·); in order to simply the implementation is it a good idea to employ
a subgroup of the (Zp,+), with the same prime p?. How is security affected?

Solution:

(a) The discrete logarithm problems can be rewritten as the problems of finding the expo-
nents x1,−x2 ∈ {0, 1, 2, . . . , |G|−1}, |G| = 120 such that αx1 ≡ −1, and α−x2 ≡ −1

Both logarithms can be rewritten keeping the generator α ∈ G as radix. Thus, both
logarithms exist!

It is quite immediate to look at the primitive polynomial employed to represent the
elements of the multiplicative group of the polynomial field F112 and conclude that:
x1 = 2 mod 120
−x2 = 2 mod 120⇔ x2 = −2 mod 120 = 118 mod 120.
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(b) see lectures . . .

Question 6 [14 pts]

(a) Apply the Pollard’s ρ method to factorize the RSA modulus n = p · q = 551dec.
Assume f(x) = x2 + 1 mod n as the “random-walking” function. Show every step of the
computation. (As a backup alternative, apply a “trivial division” strategy).

(b) Describe the Pollard’s P − 1 factoring algorithms, pointing out its computational complexity.

(c) Given the values e1 = 9, e2 = 11 state which of them is an admissible public exponent,
motivating your answer. Show the value of the corresponding RSA public and private keys
kpub=(e, n), kpriv=(p, q, ϕ(n), d).

(d) Sign the message m=256dec∈Zn (without employing any padding scheme) through applying
the CRT. Describe each step of the procedure.

(e) Consider a schoolbook RSA cryptosystem employing the Montgomery multiplication as build-
ing block. Write down the pseudo code of both the encryption and the CRT-based decryption
transformations, pointing out their asymptotic computational complexities.

(f) Consider the modulus N = 29dec and the value A = 6dec. Assuming a binary encoding of the
operands and the smallest possible value for the Montgomery radix R

• compute the value Ã that is the result of mapping A into the Montgomery domain;

• apply the Montgomery multiplication algorithm to compute Ã2.

Show every step of the computations.

Solution:

(a) p = 19, q = 29, n = p · q = 551.

(b) see lectures . . .

(c) ϕ(n) = 504 = 23 · 32 · 7, e2 = 11dec ∈ Z∗ϕ(n), d ≡ϕ(n) e2
−1 ≡504 11−1 ≡504 11143 ≡504

275dec;

(d) mp ≡19 256275 mod 18 ≡19 95 ≡19 16,
mq ≡29 256275 mod 28 ≡29 −523 ≡29 −4 ≡29 25,
s = q ·(q−1 mod p) ·mp ≡551 29 ·2 ·16+19 ·26 ·25 ≡551 928+12350 ≡551 13278 ≡551

54dec.

(e) see lectures . . .

(f) N = 29, R = 32, RR′ −NN ′ = 1,
R′ = R−1 mod N = 327 mod 29 = 10,
N ′ = −N−1 mod R = −29ϕ(32)−1 mod 32 = −2915 mod 32 = −21 mod 32 = 11.
Ã = MMul(A,R2) = A ·R2 ·R−1 mod N = 6 · 32 mod 29 = 18,
Ã2 = MMul(Ã, Ã) = 18 · 18 · 10 mod 29 = 21,
see lectures for the execution trace of the Montgomery multiplication with binary
encoded operands.
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