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Question 1 [3 pts]
Consider an improved version of the Vigenère cipher, where instead of using multiple shift ciphers,
multiple mono-alphabetic substitution ciphers are used. That is, the key consists of t random
permutations of the alphabet, and the plaintext characters in positions i, t + i, 2t + i, and so on,
are encrypted using the ith permutation.
Show how to break this version of the cipher.

Solution:
The first point to note is that Kasiski’s method for determining t works for this cipher as well.
The only difference is therefore in the second stage of the attack. Here, one needs to build a
frequency table for each of the t keys, and carry out an attack like on the mono-alphabetic
cipher. Given a long enough plaintext, this will work successfully.

Question 2 [5 pts]
Consider a 128-bit block symmetric cipher, built with a Substitution-Permutation network ap-
proach. Two alternate designs are available, both employing a key addition via bitwise xor:

• Design A: 4× 4 bit S-boxes, having a worst-case linear bias of 1
8 , and a worst case differential

probability of 1
4 . Permutation layer built so that a single bit input to the permutation layer

will affect four distinct S-Boxes on the next round.

• Design B: 8 × 8 bit S-Boxes, with worst-case linear bias of 1
64 and worst-case differential

probability of 1
64 . Permutation layer built so that a single bit input will affect two S-Boxes

on the next round.

(a) What is the design that allows to build the shortest (in terms of number of rounds) block
cipher, assuming a key length of 128 bits?

Solution:
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(a) Design A will need to approximate 1 S-Box with two rounds, 5 with three rounds, 21
with four rounds, and 53 with five rounds. This results in the linear bias falling as
1
8 ,

1
23×5 24 = 2−11, 1

23×21 220 = 2−43, 1
23×53 252 = 2−107. Since performing linear crypt-

analysis requires 1
bias2

input-output pairs, a five round block cipher with design A will
require more plaintext-ciphertext pairs than the one available (i.e., 2128) to an attacker
trying to exploit the four round linear bias of 2−107. Concerning differential cryptanal-
ysis, the differential probabilities will fall as:14 ,

1
22×5 = 2−10, 1

22×21 = 2−42, 1
22×53 =

2−106. Recalling that differential cryptanalysis needs 1
pdiff

input-output pairs, the dif-

ferential probability after five round will effectively be smaller than 1
2128

. Therefore,
since six rounds are needed to prevent an attacker from exploiting the differential prob-
ability at the fifth round due to the lack of input-output pairs.

Design B will need to approximate 1 S-Box with two rounds, 3 with three rounds, 7 with
four rounds, 15 with five rounds, and 31 with six rounds. This results in the linear bias
falling as 1

64 ,
1

26×3 22 = 2−16, 1
26×7 26 = 2−36, 1

26×15 214 = 2−76, 1
26×31 230 = 2−156. Since

performing linear cryptanalysis requires 1
bias2

input-output pairs, five rounds of design
B are sufficient to be immune to it. Concerning differential cryptanalysis, the differen-
tial probabilities will fall as: 1

64 ,
1

26×3 = 2−18, 1
26×7 = 2−42, 1

26×15 = 2−90, 1
26×31 = 2−186.

Recalling that differential cryptanalysis needs 1
pdiff

input-output pairs, six rounds are

needed to achieve the desired immunity for design B.

As a consequence, both designs require six rounds to be immune to both linear and
differential cryptanalysis.

Question 3 [3 pts]
Consider the case of connections employing the TLS protocol.

(a) What is the advantage of exploiting a TLS based secure transport to build a point-to-point
VPN with respect to an IPSec based alternative?

(b) Is it possible to detect TLS connection downgrades to an unwanted version assuming that only
the client configuration can be chosen at will?

(c) Is it possible to do the same assuming that only the server configuration can be chosen at will?

Solution:

(a) A TLS based point-to-point VPN will be able to work through Network Address and
Port Translation (NAPT) services, while an IPSec based one will not, as the port
number is kept within the encrypted payload.

(b) Only in TLS version 1.3 this is possible as the random nonce will be modified by a TLS
1.3 server receiving a mangled request for a downgraded connection in such a fashion
that the client will be able to detect the downgrade attempt.

(c) Yes, in any TLS version it is the server which ultimately decides the TLS version to be
employed. It is sufficient to configure a server in such a way that no versions below
the ones acceptable are employed.

Extensive explanations on slides.
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Question 4 [6 pts]

(a) List the cardinality, number of subgroups and number of generators of the following multi-
plicative groups: (Z49,×) and (F∗72 , ·).

(b) f(x) = x2 + x+ 3∈F7[x] is a primitive polynomial for F72 . Show the roots of f(x) as elements
of F72

∼= {θ6α6 + θ5α
5 + . . .+ θ1α+ θ0, θi ∈ F7, 0≤i≤6 f(α) = 0}.

(c) The DSS-DSA standard recommends a public key with two primes p, q such that the pair
(L,N), with L = log2(p) and N = log2(q), is in the following list: (1024,160), (2048,224),
(2048,256), and (3072,256).
What is the purpose of p, q in the public key?
What is the reason for including q in the public key?

Solution:

(a) |Z49| = ϕ(72) = 72 − 7 = 42 = 2 · 3 · 7.
The number of subgroups of (Z49,×) equals the number of divisors of its cardinality
i.e.: |{1, 2, 3, 6, 7, 14, 21, 42}| = 8.
The number of generators of the cyclic group (Z49,×) is ϕ(42)=(2−1)·(3−1)·(7−1)=12.

|F∗72 | = 72 − 1 = 48 = 24 · 3.
The number of subgroups of (F∗72 , ·) equals the number of divisors of its cardinality
i.e.: |{1, 2, 3, 4, 6, 8, 12, 16, 24, 48}| = 10.
The number of generators of the cyclic group (F∗72 , ·) is ϕ(48) = (24−23)·(3−1) = 16.

(b) α ∈ F72 \ F7, f(α) = 0, α2 ≡ −α− 3.
the two conjugate roots of f(x) are α and α7, where α7 ≡ (α2 · α)2 · α ≡
≡ (−α2 − 3 · α)2 · α ≡ (−2 · α + 3)2 · α ≡ (4α2 + 2 + 2α) · α ≡ (−2α + 4) · α ≡
6α+ 6 ≡ −α− 1.

(c) see lectures. . .

Question 5 [5 pts]
Consider the following relation: 13 ≡ 3x mod 17.

(a) Compute the discrete logarithm x ≡ϕ(17) logD3 (13) applying the Pohlig-Hellman method.

(b) Show the computational complexity of the Pohlig-Hellman algorithm. When is it appropriate
to use this method?

Solution:

(a) We are considering the algebra of the group (Z∗17, ·),
with n = |Z∗17|=ϕ(17)=16=24 elements.

x ≡ϕ(17) logD3 (13)⇔ x mod 24 ≡ logD3 (13) mod 24

The Pohlig-Hellman algorithm compute (x mod p41), with p1=2, as follows:
let the 2-radix expansion of x mod 24 be x = l0 + l1 · p1 + l2 · p21 + l3 · p31 and denote
as: g=3 the base of the logarithm, β=13, n=16 the order of the group.
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η = g
n
p1 ≡17 38 ≡17 16 ≡17 −1.

γ0 = 1,

δ0 ≡ (βγ−10 )
n
p1 ≡17 138 ≡17 1.

Knowing that δ0 = (gxγ−10 )
n
p1 ≡ (gl0+l1·p1+l2·p21+l3·p31)

n
p1 ⇒ δ0 ≡ (g

n
p1 )l0 ⇔ δ0 ≡ ηl0 ,

1 ≡17 (−1)l0 , therefore: l0 = 0.

γ1 = γ0 · gl0p
0
1 ≡17 1,

δ1 ≡ (βγ−11 )
n

p21 ≡17 134 ≡17 1.

Knowing that δ1 = (gxγ−11 )
n

p21 ≡ (gx−l0)
n

p21 ⇒ δ1 ≡ (g
n
p1 )l1 ⇔ δ1 ≡ ηl1 ,

1 ≡17 (−1)l1 , therefore: l1 = 0.

γ2 = γ1 · gl0p
0
1+l1p11 ≡17 1,

δ2 ≡ (βγ−12 )
n

p31 ≡17 132 ≡17 16 ≡17 −1.

Knowing that δ2 = (gxγ−12 )
n

p31 ≡ (gx−l0−l1p1)
n

p31 ⇒ δ2 ≡ (g
n
p1 )l2 ⇔ δ2 ≡ ηl2 ,

−1 ≡17 (−1)l2 , therefore: l2 = 1.

γ3 = γ2 · gl0p
0
1+l1p11+l2p21 ≡17 34 ≡17 13,

δ3 ≡ (βγ−13 )
n

p41 ≡17 13 · 13−1 ≡17 1.

Knowing that δ3 = (gxγ−13 )
n

p41 ≡ (gx1−l0)
n

p41 ⇒ δ3 ≡ (g
n
p1 )l3 ⇔ δ3 ≡ ηl3 ,

1 ≡17 (−1)l3 , therefore: l3 = 0.

x = l0 + l1 · 2 + l2 · 22 + l3 · 23 = 22 = 4.

Validation: 3x
?≡17 13, taking x=4, it is true that 34 ≡17 13.

(b) (see lectures. . .)

Question 6 [12 pts]

(a) Describe the Fermat primality test and the Miller-Rabin primality test.

(b) Apply the Pollard’s ρ method1 to factor the RSA public modulus n = p · q = 1357

(c) Given the factorization of n = p · q, note that p = 2p1 + 1 and q = 2q1 + 1, with p1 and q1 also
prime numbers. Show the number of possible values for the RSA encryption exponent e as
a function of p1 and q1 and compute its value. Subsequently, assuming e = 5, compute the
corresponding RSA private key, justifying your answer.

(d) Assume that a smart-card contains an RSA co-processor with an hardcoded public modulus
n = 1541, and a school-book implementation (no OAEP), leaving the choice of the public
exponent to the user. Eve obtains two encryptions of the same message m with the following

1as a back-up strategy you can apply a trivial division method
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two public exponents: eA = 5, eB = 7.
Can she derive the plaintext message?
Motivate your answer and show every step of the computation.

(e) Assume to work into the Montgomery domain: (Z̃p,+,×), p = 23

• Exhibit the smallest admissible value for the Montgomery Radix, R, and the values R′,
p′ that satisfy the relation: gcd(R, p)=RR′−p p′=1, justifying your answer;

• Compute the Montgomery multiplication C̃ = MonPro(Ã, B̃) = Ã·B̃ ·R−1 mod p, where
Ã = 16dec and B̃ = 11dec, assuming a binary encoding of the operands.

Solution:
(Sketch)

(e) R = 25 = 32. gcd(32, 23) = 32(−5)− 23(−7) = 1 ⇒
R′ = R−1 mod p ≡23 −5 ≡23 18, p′ = p−1 mod R ≡32 −7 ≡32 25.

p = 23dec = 〈10111〉2, p′0 = (p′ mod 2) = 1

B̃ = 11dec = 〈B̃4B̃3B̃2B̃1B̃0〉2 = 〈01011〉2
Ã = 16dec = 〈Ã4Ã3Ã2Ã1Ã0〉2 = 〈10000〉2

00000 +

00000 Ã0B̃ = 〈00000〉2
00000 +
00000 (p′0x0) p = 〈00000〉2
00000 perform a right-shift of 1 bit

...
...

00000 +

01011 Ã4B̃ = 〈01011〉2
01011 +
10111 (p′0x0) p = 〈10111〉2

100010 perform a right-shift of 1 bit
10001

C̃ = 〈10001〉2 = 17dec< p, Thus: C≡pMonPro(16dec, 11dec) ≡23 17dec

Validation:

C̃=MonPro(16, 11)
def
= 16 · 11 ·R−1 mod p≡2315 · 32−1≡23 15 · 18 ≡23 17dec
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