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Time: 2h, 15min. Use of textbooks, notes, or Internet connected devices (including
smartphones) is not allowed. The usage of simple calculators is allowed. Prior to turn
in your paper, write your name on any additional sheet and sign it.

Question 1 [3 pts]
You are in charge to decide which of the two following password storage schemes should be used
for storing login passwords on a computing platform.

• Accept a password p with a maximum length of 14, 7-bit ASCII, characters, split it into
two halves p1, p2, compute SHA-256300(p1||salt) (i.e., compute SHA-256(. . .SHA-256(SHA-
256(p1||salt)). . .), applying 300 times the SHA-256(·) function) and SHA-256300(p2||salt) with
a 20 bytes salt and store the two hashes (together with the salts).

• Accept a password p with a minimum length of 9, 7-bit ASCII, characters and a maximum
of 14, compute SHA-256300(p||salt) with a 8 bytes salt and store the hash (together with the
salt).

• Accept a password p with a minimum length of 9, 7-bit ASCII, characters and a maximum
of 14, compute SHA-256300(p) and store the hash.

Solution:
The second password scheme is definitely stronger than the first one as an attacker only needs
to perform a bruteforce attack over a password space of (27)7 = 249 possible passwords,
while the second requires a minimum exhaustive search over a keyspace of (27)9 = 263 to
effectively crack the scheme. The third password scheme is as strong as the second, as far
as the effort required to bruteforce a single password goes, but is not employing a salt to
prevent TMTO-based attacks such as Rainbow tables. As the required bruteforce efforts
(263 operations) is within the possibility of large organizations, the use of the salt is required
for the password scheme not to be breached.

Question 2 [3 pts]
Describe the available options to authenticate a user employing the ssh protocol and specify proper
cipher suites and key-length choices.

Solution:
see lectures ...
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Question 3 [8 pts]
Consider the finite field F26 .

(a) Verify that f(x) = x6 + x5 + x4 + x+ 1 ∈ F2[x] is a primitive polynomial.

(b) Let α ∈ F∗26 \ F2 be a root of f(x).
What is the order of β = α15? Compute γ = α−127 ∈ F26 .

(c) Assuming F26
∼= F2[x]/(f(x)), state which one(s) among the following discrete logs exist,

justifying your answer both in the positive and in the negative case.
x ≡ logDα21(α9) mod |α21|, y ≡ logDα9(1) mod |α9|, z ≡ logDα9(α−9) mod |α9|.

(d) Describe what are the known algorithms to solve a discrete logarithm, specifying their com-
putational complexity.

Solution:

(a) n = |F∗26 | = 63 = 32 · 7. Proper divisors of n: 3, 7, 9, 21. if α ∈ F26 \ F2 is a root of
f(x) (i.e., α6 = α5 + α4 + α+ 1) and this polynomial is primitive, then:

α3 6≡ 1 (True);

α7 ≡ (α5 + α4 + α+ 1) + α5 + α2 + α ≡ α4 + α2 + 1 6≡ 1 (True);

α9 ≡ (α4 +α2 + 1) ·α2 ≡ α5 +α4 +α+ 1 +α4 +α2 ≡ α5 +α2 +α+ 1 6≡ 1 (True);

α21 ≡ (α9)2 · α3 ≡ α13 + α7 + α5 + α3 ≡ α · (α6)2 + α4 + α2 + 1 + α5 + α3 ≡
α·(α10+α8+α2+1)+α4+α2+1+α5+α3 ≡ α·(α5+α4+α+1+α3+α2+α+α5+α3+
α+α2+1)+α4+α2+1+α5+α3 ≡ (α5+α2)+α4+α2+1+α5+α3 ≡ α4+α3+1 6≡ 1
(True);

α63 ≡ (α4+α3+1)·(α4+α3+1)2 ≡ (α4+α3+1)·(α5+α3+α+α5+α4+α+1+1) ≡
(α4 + α3 + 1) · (α4 + α3) ≡ α5 + α3 + α+ α5 + α4 + α+ 1 + α4 + α3 ≡ 1 (True).

(b) β = α15, ord(α)= n = 63.
ord(β)= n

gcd(n,15) = 63
3 = 21.

γ ≡ α−127 ≡ α−1 ≡ α63−1α62α(111110)bin ≡
≡ (((((α)2 · α)2 · α)2 · α)2 · α)2 ≡
≡ ((α5 + α4 + α+ 1) · α)2 · α)2 · α)2 ≡
≡ (((α4 + α2 + 1)2 · α)2 · α)2 ≡
≡ ((1 + α2)2 · α)2 ≡
≡ (α+ α5)2 ≡ α5 + α4 + α3 + 1. Verification: γ · α mod f(x) = 1.

(c) x ≡ logDα21(α9) mod |α21| this log does not exist as α21 has order 3, this means that
the subgroup generated by α21 is A = {1, α21, α−21 ≡ α42} and 42 mod 63 6≡ 9, this
means that α9 6∈ A.
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y ≡ logDα9(1) mod |α9|, this logarithm exists as the multiplicative group generated by
α9 contains the neutral element 1, and the exponent of the log radix to get 1 is y = 0.

z ≡ logDα9(α−9) mod |α9|, this logarithm exists as the finite multiplicative group gen-
erated by α9 contains the inverse α−9 for the definition of group, and the exponent of
the log radix to get it is z = −1 mod 7 = 6, as |α9| = ord(α9) = 7.

(d) see lectures . . .

Question 4 [8 pts]
Consider an Elliptic Curve (EC) defined by the following equation:

E(F7) : y2 = x3 + 3

(a) Show the coordinates of all points on E(F7), the order of the group, m=|E(F7)|, and point out
the number of primitive elements.

(b) In order to verify the following equality: [m]A=O; compute the scalar multiplication [m]A,
with A=(3, 4), through applying a double-and-add strategy.

One of the end-points of a communication, say Bob, publishes the equation of the curve E(F7)
and its own EC-ElGamal public-key kpub=〈n,A, [kpriv]A〉, where n is the prime factor of m and
A=(3, 4). Obviously, Bob keeps secret its private-key kpriv=3∈Zn.

The other communicating party, say Alice, wishes to send the binary message, msg=(101)bin,
to Bob and chooses a nonce r=4.

(c) Show the ciphertext value, 〈γ, δ〉, transmitted by Alice; and show how Bob get the plaintext.

(d) Explain why elliptic curve based cryptosystems exhibit public key sizes smaller than both RSA
public keys and ElGamal-based public keys when the security guarantees of the mentioned
systems in terms of mathematical strength are the same.

Solution:

(a)

0 1 2 3 4 5 6

x3 + 3 3 4 4 2 4 2 2
y2 0 1 4 2 2 4 1

G = {O (1, 2) (1, 5) (2, 2) (2, 5) (3, 3) (3, 4) (4, 2) (4, 5) (5, 3) (5, 4) (6, 3) (6, 4) }
m = |G| = 13.
Num. of primitive elements: ϕ(m) = 12.

(b) A = (3, 4), m = 13 = (1101)bin, B = [13]A = [2]([2]([2]A+A)) +A.

λ[2]A =
3x2A+0
2yA

= 3·9+0
2·4 ≡7 6

x[2]A = λ2[2]A − 2xA ≡7 36− 6 ≡7 2.

y[2]A = −yA + λ[2]A · (xA − x[2]A) ≡7 −4 + 6 · (3− 2) ≡7 2⇒ [2]A = (2, 2).

λ[3]A =
y[2]A−yA
x[2]A−xA

= 2−4
2−3 ≡7 2.

x[3]A = λ2[3]A − xA − x[2]A ≡7 4− 3− 2 ≡7 6.
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y[3]A = −y[2]A + λ[3]A · (x[2]A − x[3]A) ≡7 −2 + 2 · (2− 6) ≡7 4⇒ [3]A = (6, 4).

λ[6]A =
3x2

[3]A
+0

2y[3]A
= 3·36+0

2·4 ≡7 −2−1 ≡7 3

x[6]A = λ2[6]A − 2x[3]A ≡7 9− 12 ≡7 4.

y[6]A = −y[3]A + λ[6]A · (x[3]A − x[6]A) ≡7 −4 + 3 · (6− 4) ≡7 2⇒ [6]A = (4, 2).

λ[12]A =
3x2

[6]A
+0

2y[6]A
= 3·16+0

2·2 ≡7 5

x[12]A = λ2[12]A − 2x[6]A ≡7 25− 8 ≡7 3.

y[12]A = −y[6]A + λ[12]A · (x[6]A − x[12]A) ≡7 −2 + 5 · (4− 3) ≡7 3⇒ [12]A = (3, 3).

λ[13]A =
y[12]A−yA
x[12]A−xA

= 3−4
3−3 ≡7 ∞⇒ [13]A = O.

(c) [r]A = [4](3, 4) = [2]([2](3, 4))

λ[4]A =
3x2

[2]A
+0

2y[2]A
= 3·4+0

2·2 ≡7 3

x[4]A = λ2[4]A − 2x[2]A ≡7 9− 4 ≡7 5.

y[4]A = −y[2]A + λ[4]A · (x[2]A − x[4]A) ≡7 −2 + 3 · (2− 5) ≡7 3⇒ [4]A = (5, 3).

[kpriv]A = [3](3, 4) = (6, 4) see point (b){
γ = [r]A = [4](3, 4) = (5, 3)
δ = m bitwiseXOR xCoord([r]kpriv) = (101)bin ⊕ (110)bin = (011)bin

(d) see lectures . . .

Question 5 [12 pts]

(a) Apply the Fermat’s factorization method to the RSA modulus n = p · q = 551 showing each
step of the computation (As a backup strategy apply a trivial division strategy).

(Hint) The last two decimal digits of a perfect square can be found among the following
values: 00, e1, e4, 25, o6, and e9, where ’e’ stands for an even decimal digit and ’o’ for an
odd decimal digit.

(b) Describe the Miller-Rabin primality test, and show its application to the greatest factor of n,
with base a = 3.

(c) Let e=5dec be the public exponent of a RSA public-key kpub=〈e, n〉. Knowing the factorization
of the modulus n, compute the value of the corresponding RSA private-key kpriv=(p, q, ϕ(n), d).
Show every step of the computation.

(d) Decrypt the message c=550dec∈Zn (provided without any padding scheme) through applying
the CRT. Describe each step of the procedure.
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(e) Assume to work into the Montgomery domain: (Z̃p,+,×), p = 19

• Compute the Montgomery multiplication C=A×B mod p, where A=13dec and B=4dec
are values in the Montgomery domain. Assume a binary encoding of the operands.

• Explain the reasons to employ a Montgomery-based arithmetic for the efficient imple-
mentation of RSA or discrete log.-based cryptosystems.

Solution:

(a), (b)
x = d

√
ne = 24. n− x2 = 25 = y2 is a perfect square.

This means the factors are: x− y = 19, x+ y = 29.
Therefore for RSA: p = 19, q = 29.
see lectures . . .

(c) see lectures . . .
ϕ(n) = 504 = 24 · 3 · 7,
d ≡ ϕ(n)eϕ(ϕ(n))−1 ≡504 595 ≡504 . . . ≡504 101.

(d) see lectures . . .
RSADecrypt CRT(550dec) = . . . ≡551 −1 ≡551 550.

(e) see lectures . . .
N = 19, R = 25 = 32,
R′ = R−1 mod N = 32−1 mod 19 = . . . = 3,
N ′ = N−1 mod R = 19−1 mod 32 = . . . = 27
see lectures . . .
C = · · · = (00100)bin = 4dec
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