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Question 1 [5 pts]
Suppose you are in charge of security for a major web site, and you are considering what would
happen if an attacker stole your database of usernames and passwords. You have already imple-
mented a basic defense: instead of storing the plaintext passwords, you store their SHA-256 hashes.
Your threat model assumes that the attacker can carry out 4 million SHA-256 hashes per second.
His goal is to recover as many plaintext passwords as possible from the information in the stolen
database. Valid passwords for your site may contain only characters a– z, A–Z, and 0–9, and are
exactly 8 characters long.

(a) Given the hash of a single password, how many hours would it take for the attacker to crack
a single password by brute force, on average?

(b) Describe an attack based on the use of rainbow tables, specifying what they are and the
computation-memory tradeoffs that improve on the brute force approach.

(c) Describe possible improvements to the basic approach of storing usernames and hashes (where
hash = SHA-256(password) for the users of the website at hand, with the aim to provide
strong protection agaist attacks based on the use of rainbow tables.

Question 2 [3 pts]
A programmer wants to use CBC in order to protect both the integrity and confidentiality of
network packets. She attaches a block of zero bits Mn+1 to the end of the plaintext M1||M2|| . . . ||Mn

as redundancy, then encrypts with CBC. At the receiving end, she verifies that the added redundant
bits are still all zero after CBC decryption. Does this test ensure the integrity of the transferred
message? Justify your answer.

Question 3 [8 pts]
Consider the finite field F34 .

(a) Establish if f(x) = x4−x−1 ∈ F3[x], and g(x) = x4−x2−1 ∈ F3[x] are irreducible polynomials
or not. Establish also if f(x) and g(x) are primitive polynomials. Justify your answer.
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(b) Exhibit the number fo generators in F34 , and the number of both monic irreducible polynomials
and monic primitive polynomials having degree 4 and coefficients in F3[x].

(c) Explain what is the hard problem in the multiplicative group of a finite field suitable to set up a
cryptosystem and describe at least one algorithm (except brute-forcing) to solve it, specifying
its computational complexity.

Question 4 [8 pts]
Consider an El-Gamal signature scheme based on the cyclic group G=(F∗26 , ·), with order n=|G|=63.
Let P (x)=x6 +x5 +x4 +x+1∈F2[x] be the generating polynomial of the field F26

∼=F2(α), P (α)=0,
α∈F26 \ F2, and assume to employ a hash function (h : {0, 1}∗ 7→ Zn) that maps its input binary
sequences in their corresponding decimal values modulo n.
Given the key-pair:

kpriv = 〈 s ∈ Z63 〉 = 〈 11 〉, kpub = 〈 n, α, αs 〉 = 〈 63, α, α11 ≡ α3 + 1 = (001001) 〉

(a) Check if the following signatures are correct:

(i) S1=〈 m1, γ, δ 〉=〈 (100000), (010000), 27 〉
(ii) S2=〈 m2, γ, δ 〉=〈 (111111), (001000), 0 〉

(b) In a practical implementation of the ElGamal signature scheme based on the arithmetic of
a finite field, what are the criteria to select the cryptosystem parameters and establish its
(mathematical) security level?

Question 5 [12 pts]
(a) Apply the Pollard’s ρ method to factorize the RSA modulus n = p · q = 713.

Assume f(x) = x2 + 1 mod n as “random-walking” function. Show every step of the compu-
tation. (As a backup alternative, apply a “trivial division” strategy).

(b) Describe the Miller-Rabin primality test, and show its application to the greatest factor of n,
with base a = 3.

(c) Choose an admissible public exponent e between the values e = 11dec and e = 13dec and
compute the value of the corresponding RSA private key kpriv = (p, q, ϕ(n), d). Show every
step of the computation.

(d) Sign the message m=100dec ∈ Zn (without employing any padding scheme) through applying
the CRT. Describe each step of the procedure.

(e) Assume to work into the Montgomery domain: (Z̃p,+,×), p = 13

• Show the definition of the Montgomery Multiplication and the smallest admissible value
for the Montgomery Radix: R

• Show the high-level pseudo-code to implement the Montgomery Reduction procedure
MRed(...), and prove the correctness of the algorithm.

• Compute a pair of integer values R′, p′ that satisfy the relation: gcd(R, p)=RR′−p p′=1.

• Compute the Montgomery multiplication C = A × B mod p, where A = 11dec and
B = 4dec are values in the Montgomery domain, assuming a binary encoding of the
operands
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