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Question 1 [2 pts]
An X.509 certificate for foo.com includes the 256 bit RSA public key for the aforementioned
common name, and its MD5 hash signed with 512 bit RSA by Faust Certification Authority inc.
Alice’s browser contains a valid, trusted root CA certificate for Faust CA inc.

(a) Highlight which are Alice’s concerns (all of them) toward the security of a possible TLS com-
munication with foo.com, instantiated with the aforementioned X.509 certificate.

Solution:

The first issue regarding the certificate is an insufficient keylength choice for both the RSA
algorithms; anything below 2048 bit is to be considered insecure for RSA. The second
concern is the fact that it is possible to find almost-arbitrary collisions to MD5 (i.e.
the message is picked arbitrarily, save for the last MD5 block), which in turn allows
to forge a certificate having the same signature as the one of foo.com even without
passing by the CA.

Question 2 [6 pts]
Rosen Association inc. mandates the use of encrypted disk volumes for its own employees enforcing
the following:

• All the disks have two partitions, one containing the OS binaries (with a non-integrity checking
filesystem), while the other hosts the employee data. The OS partition is to be encrypted
with AES-256-CBC with a randomized IV when the partition is created, while the user
data partition (i.e., the employee partition) should employ AES-256-CTR, using the string
“NEXUS6-ROSENInc.” as IV.

• All the employee partitions are set up by the system administrator which, during formatting,
takes care to fill the space within the encrypted volume with zeroes, so to fill the effective
physical diskspace with random data.
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• The employees are enforced to pick their disk encryption passwords as 16 character random
strings containing decimal digits. The password is hashed through SHA-2-256 to fill in the
AES-256 key.

(a) Discuss the choices of Rosen inc. concerning the choice of the encryption algorithm for the OS
partition, highlighting issues and proposing a way to fix them.

(b) Discuss the choice of the encryption algorithm for the employee partition, and the decision of
the system adminstrator to wipe the internal space of the disk volume.

(c) Discuss the password policy chosen by Rosen, providing a quantitative estimate for the attacker
effort to be spent to completely break the whole system, in the most efficient way possible

Solution:

(a) Picking a block cipher in CBC mode, without any integrity check, allows an attacker
to exploit the CBC malleability to his own advantage. In particular, considering the
case of a disk volume where an OS is stored, it is possible to alter partially the OS
binaries without deciphering the volume.

(b) The choice of a counter-mode of operation for disk encryption is not problematic as
long as the CTR IV is picked at random. Given the choice of Rosen inc. to employ a
fixed IV, the pseudorandom keystream obtained out of the AES-256 in CTR mode is
the same for all the partitions of the employees using the same password. This in turn
allows to extract information without the secret key, adding via xor two instances of
encrypted data with the same password (e.g. two full disk dumps taken in different
moments).

The decision of the system administrators to fill with zeroes the partitions effectively
worsens the issue: the attacker is basically provided with the whole keystream, if he is
able to dump the disk of a laptop right after it has been issued.

(c) Considering the password policy, the effective password space is 1016, which is equiva-
lent to roughly 253. This in turn implies that a full exhaustive search for the password
is within feasibility for moderately motivated attackers. As a further issue, the pass-
words are used as-is, without any salted hashing scheme, thus allowing an attacker to
successfully exploit TMTO strategies.

Question 3 [2 pts]

A company is employing keyed RIPEMD-64 hashes (64-bit digest) as an integrity checking
mechanism for files on a disk. The security officer is currently concerned with the security margin
against intentional replacement of files with garbage data and suggests to change the keyed hashing
mechanism to SHA-2-256. The commercial department points out that employing SHA-2-256 would
increment the amount of required disk space and, to reduce the migration costs, proposes to employ
SHA-2-256 to hash the file contents, and store only the first quarter of the digest for integrity
checking.

(a) Is the security officer concern well justified? Provide a quantitative motivation to it.

(b) Is it possible to adopt the commercial department solution? Justify quantitatively the answer.
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Solution:

(a) Yes: if somene knows the key, a 64 bit hash implies the possibility of obtaining a collision
through exhaustive search in around 232 operations, thus the intentional replacement
of files with garbage data is well within the realm of feasibility.

(b) No: performing the comparison only on the first 64 bits of the digest of SHA-2-256,
and assuming that the bits of the first quarter of the hash follow the same uniform
distribution as the rest of it, it is possible to obtain a partially colliding digest with the
same computational effort of the previous hashing mechanism.

Question 4 [4 pts]
Consider the finite field F26 .

(a) Show the number of irreducible polynomials that can be used to represent the field elements.

(b) Show the number of primitive polynomials that can be used to represent the field elements.

(c) Verify that f(x)=x6 + x+ 1 is a primitive polynomial.

Solution:

(a) 26 = 1 ·N1(2) + 2 ·N2(2) + 2 ·N3(2) + 6 ·N6(2)⇔
26 = 1 · 2 + 2 · 22−22 + 2 · 23−23 + 6 ·N6(2)⇒
N6(2) = 26−2−2−4

6 = 9.

(b) M6(2) =
ϕ(|F26 |)

6 = ϕ(63)
6 = (32−3)·(7−1)

6 = 6.

(c) f(x) is primitive if its roots are generators of the multiplicative group
(
F∗26 , ·

)
.

Remember that F26
∼= F2[x]/〈f(x)〉 ∼= F2(α), where α/∈F2, f(α)=0 and the elements

of the field can be represented as F2(α)={θ5α5 + . . .+ θ1α+ θ0}, θi∈{0, 1}, 0≤i≤5.
Therefore, f(x) is primitive over F26 , n=|F26 |=63=32·7,
iif assuming f(α)=0 ⇔ α6 ≡α+1, the following relations hold

α3
?
6≡ 1

α7
?
6≡ 1

α9
?
6≡ 1

α21
?
6≡ 1

α63 ?≡ 1

⇒


α3 6≡ 1
α7 ≡ α6 · α ≡ α2 + α 6≡ 1
α9 ≡ α7 · α2 ≡ α4 + α3 6≡ 1
α21 ≡ (α7)3 ≡ (α · (α+ 1))3 ≡ . . . ≡ α5 + α4 + α3 + α+ 1 6≡ 1
α63 ≡ . . . ≡ 1 ok!

Question 5 [6 pts]
Consider the following relation: 11 ≡ 2x mod 13.

(a) Compute the discrete logarithm x ≡ϕ(13) logD2 11 applying the Pohlig-Hellman method.

(b) Show the computational complexity of the Pohlig-Hellman algorithm. When is it appropriate
to use this method?
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Solution:

(a) We are considering the algebra of the group (Z∗13, ·),
with |Z13|=ϕ(13)=12=22·3 elements.

x ≡ϕ(13) logD2 11 ⇔
{
x ≡ x1 mod 22

x ≡ x2 mod 3
⇒

x ≡12 x1 · 3 · (3−1 mod 4) + x2 · 4 · (4−1 mod 3)⇒ x ≡12 9x1 + 4x2

The Pohlig-Hellman algorithm compute (x1 mod p21), with p1=2, as follows:
let the 2-radix expansion of x1 mod 22 be x1 = l0 + l12 and denote as: g=2 the base
of the logarithm, β=11, n=12 the order of the group

η = g
n
p1 ≡13 26 ≡13 12

γ0 = 1, δ0 ≡ (βγ−10 )
n
p1 ≡13 116 ≡13 12.

Knowing that δ0 = (gxγ−10 )
n
p1 ≡ gx1

n
p1 ⇒ δ0 ≡ (g

n
p1 )l0 , we have

δ0 ≡13 η
l0 ⇔ 12 ≡13 12l0 , therefore: l0 = 1.

γ1 = γ0 · gl0p
0
1 ≡13 2, δ1 ≡ (βγ−11 )

n

p21 ≡13 (11 · 2−1)3 ≡13 (11 · 7)3 ≡13 12.

Knowing that δ1 = (gxγ−11 )
n

p21 ≡ (gx1−l0)
n

p21 ⇒ δ1 ≡ (g
n
p1 )l1 , we have

12 ≡13 η
l1 ⇔ 12 ≡13 12l1 , therefore: l1 = 1.

x1 = 1 + 1 · 2 = 3.

The Pohlig-Hellman algorithm compute (x2 mod p12), with p2=3, as follows:
let the 3-radix expansion of x2 mod 3 be x2 = l0 and denote as: g=2 the base of the
logarithm, β=11, n=12 the order of the group

η = g
n
p2 ≡13 24 ≡13 3

γ0 = 1, δ0 ≡ (βγ−10 )
n
p2 ≡13 114 ≡13 3.

from δ0 ≡ (g
n
p2 )l0 , we have

δ0 ≡13 η
l0 ⇔ 3 ≡13 3l0 , therefore: l0 = 1.

x2 = 1.

x ≡12 9x1 + 4x2 ≡12 27 + 4 ≡12 7.

Validation: 2x
?≡13 11, taking x=7, it is true that 27 ≡13 11.

(b) (see lectures. . .)

Question 6 [12 pts]

(a) Consider the RSA modulus n = p · q = 713 = 23 · 31

• Apply the Miller-Rabin primality test to the factor p employing as bases a = 3, b = 7.

• Given the public exponent e=7 ∈ Z∗ϕ(n), show the value of the RSA private key,

kpriv=(p, q, ϕ(n), d) and specify every step of the computation.
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• Apply a Right-to-Left Square & Multiply strategy to compute the ciphertext c1 =
m13 mod n, with m = 101 mod n employing a radix-2 encoding of the exponent, and ap-
ply a Left-to-Right Square & Multiply strategy to re-compute the same value employing
a radix-4 encoding of the exponent.

(b) Assume to work into the Montgomery domain: (Z̃p,+,×), p = 23

• Show the working principle of the Montgomery Multiplication and the smallest admis-
sible value for the Montgomery Radix: R

• Exhibit the values R′, p′ that satisfy the relation: gcd(R, p)=RR′−p p′=1, justifying the
procedure

• Compute the Montgomery multiplication C̃ = MonPro(Ã, B̃) = Ã × B̃ × R−1 mod p,
where Ã = 16dec and B̃ = 11dec, assuming a binary encoding of the operands.

Solution:
(Sketch)

(a) ϕ(n) = 22 · 30 = 22 · 3 · 5 · 11 = 660,
d = eϕ(ϕ(n))−1 mod ϕ(n) = 7159 mod 660 = 283.

Right-to-Left S&M:
c1 ≡n m

13dec ≡713 101〈1101〉2 ≡713 (1012
3
)1 · (1012

2
)1 · (1012

1
)0 · (1012

0
)1 ≡713 . . .

≡713 357.
To apply the Left-to-Right S&M with a 4-radix expansion of the exponent it is conve-
nient to be able to compute the 4-th power of an integer modulo 713, efficiently;
in addition, we need to pre-compute: m ≡713 101, m2 ≡713 219, m3 ≡713 16. Thus,
c1 ≡n m

13dec ≡713 101〈31〉4 ≡713 (1013)4 · 101 ≡713 . . . ≡713 357.

(b) R = 25 = 32. gcd(32, 23) = 32(−5)− 23(−7) = 1 ⇒
R′ = R−1 mod p ≡23 −5 ≡23 18, p′ = p−1 mod R ≡32 −7 ≡32 25.

p = 23dec = 〈10111〉2, p′0 = (p′ mod 2) = 1

B̃ = 11dec = 〈B̃4B̃3B̃2B̃1B̃0〉2 = 〈01011〉2
Ã = 16dec = 〈Ã4Ã3Ã2Ã1Ã0〉2 = 〈10000〉2

00000 +

00000 Ã0B̃ = 〈00000〉2
00000 +
00000 (p′0x0) p = 〈00000〉2
00000 perform a right-shift of 1 bit

...
...

00000 +

01011 Ã4B̃ = 〈01011〉2
01011 +
10111 (p′0x0) p = 〈10111〉2

100010 perform a right-shift of 1 bit
10001

5/6



C̃ = 〈10001〉2 = 17dec< p, Thus: C≡pMonPro(16dec, 11dec) ≡23 17dec

Validation:

C̃=MonPro(16, 11)
def
= 16 · 11 ·R−1 mod p≡2315 · 32−1≡23 15 · 18 ≡23 17dec
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