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Chapter 1

Historical Ciphers and Basic Principles

Cryptanalyzing historical ciphers allows to see clearly what does it happen whenever pre-Kerchoff prin-
ciple cryptographic schemes are scrutinized with full knowledge of their structure. More in detail, we
will be breaking a couple of ciphers employing a known ciphertext only attack: the weakest possible
condition for an attacker, sometimes despite the fact that the cipher keyspace is not negligible.

1.1 Substitution Ciphers

1.1.1 Distinguishing ciphers
Examining the frequency of the single letters in an encrypted plaintext yields the results depicted in
Figure 1.1. From the results of the frequency analysis, what can you infer on the following points:

E T A O I N H S R D L U M W C Y F G P B V K X J Q Z
0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 1.1: Letter frequencies of a large English text (the actual letter is employed as the x-axis label),
and ciphertext .

1. Which is the plaintext language?

2. Is the employed cipher a substitution cipher of some kind?

3. Does the employed cipher include a permutation?
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Solution:

1. The letter frequencies match perfectly the ones of plain English: it is quite likely that the
plaintext is expressed in it.

2. The match between the two histograms suggests a monoalphabetic substitution to be the
technique in use.

3. It is not possible to infer whether or not the cipher includes a permutation from a single-letter
frequency analysis, as permutations leave this quantity unaltered.

1.1.2 Breaking Vigenére
The polyalphabetic substitution cipher known as the Vigenére cipher was invented by Giovan Battista
Bellaso back in 1553, and later misattributed to Vigenére.
The scheme exploits a keyword to define a set of shift ciphers which are applied to the plaintext depending
on the plaintext letter position. This is done mapping each letter of the alphabet to a shift amount,
and applying the circular shifts in the same order of the key letters, to the plaintext. The shifts are
repeated enough times to get the whole plaintext mapped into ciphertext. As a simple running example,
given HAL as a plaintext, and BBB as the key, the resulting shift amounts are 1-1-1, thus yielding IBM as
ciphertext. The main advantage of the Vigenére cipher is a flattening effect on the frequency histogram
of the ciphertext letters, as it can be seen in Figure 1.2. The flattening effect is more and more evident
as the length of the cipher key grows.

E T A O I N H S R D L U M W C Y F G P B V K X J Q Z
0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 1.2: Letter Frequencies of different encrypted texts computed on a ≈450k characters ciphertext:
Monoalphabetic Substitution , Vigenére w/ 6 letters key ,Vigenére w/ 30 letters key , One-
Time-Pad

The Vigenére cipher can be broken observing that, the ciphertext characters in sharing the same
position modulo the key length are actually shifted by the same amount. This in turn leads to the
possibility of finding out the key length via Kasiski examination, i.e. looking for repeated patterns in
the ciphertext, and computing the greatest common divisor of their distances.
This is rather evident in the following example, keyed with abcde

PTX: cryptodoesreallymeancryptography
KEY: abcdeabcdeabcdeabcdeabcdeabcdeab
CTX: csasxoeqhwrfcopyngdrcsasxohtdthz

Where the distance between the two ciphertext csasxo strings is 20, a multiple of the key length.
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Assuming that the results of a Kasiski examination on a Vigenére ciphertext report that the three most
frequent distances at which repeated patterns occour are 6, 24, 30.

• Which are the plausible lengths for the key?

• Considering Vigenére ciphertexts obtained encrypting English messages, (assume the entropy of a
single English symbol to be 1.5b) with a key generated as a random sequence of letters, compute
the unicity distance for the ciphertext.

• Repeat the calculations in case the key is a single English word, recalling that the English dictionary
is about 217 words wide, and in case the key is 5 random English words concatenated together.

Solution:

• Computing the gcd among and 6,24 and 30 yields 6, which is the most plausible length
for the key. However, note that key lengths of 2 and 3 are still plausible, as they do not
contradict the results of the analysis.

• Considering the entropy of a single english symbol to be 1.5b, we have that the language
redundancy of English Reng is Reng = 1− 1.5

log2(26)
= 0.681. As a consequence, the unicity

distance for a Vigenére encrypted text is n0 = log2 266

0.681 log2(26)
= 8.81. This in turn implies that

a 9 letter ciphertext is long enough to be able to tell apart which one is the correct Vigenére
key examining the plaintext obtained with it.

• In the former case, the unicity distance becomes n0 = log2 217

0.681 log2(26)
= 5.31 showing that

it is easier to tell which key is the correct one if the keyword is a random english word,
with respect to a 6 random character string. The unicity distance of the latter case can be
easily derived to be 5 times larger than the former, since the only changing quantity is the
keyspace, yielding a distance of 26.55

Assume to be encrypting a message for the SMS message system (which, we recall, is 160 characters
wide), with the Vigenére cipher, picking a random 256 characters key. Discuss the security of the system
against a known ciphertext attack, assuming that:

1. A fresh key is used for each SMS

2. The same key is reused for all SMS

Solution:

1. Since the encryption is employing a new key, selected fully independently from the plaintext,
and at least as long as the plaintext, and combines it with a bijective function (addition
modulo 26), this encryption scheme is perfectly secure.

2. This is a simple instance of a Vigenére cipher, which can be routinely broken once enough
ciphertext material is gathered, so to perform the usual frequency analysis. Note that the
effective key length in this case is 160, as the last characters of the key are never used.
As a side note, a similar, 256 B key Vigenére cipher was employed (and broken) to protect
the confidentiality of Pentax DSLRs Firmware. Note that raw exhaustive search would have
definitely been out of reach: the number of possible 256 B values is actually 28×256 = 22048.

Assume to be attacking Vigenére with stronger assumptions on the attacker model. Can you do something
better than frequency analysis assuming :

1. a chosen plaintext attack?

2. a known plaintext attack?

7
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Solution:

1. Yes. It is possible to extract the key deterministically, supplying a long string of As to the
encryption oracle. The oracle will output the key, possibly repeated one or more times as
the ciphertext. To confirm the correct key extraction, the plaintext should be at least twice
as long as the key, so that it is possible to detect the periodicity in the ciphertext.

2. Again, yes. The strategy is the result of a modification of the previous one, observing that
there is no need of having a chosen plaintext to derive the shift amounts caused by the
encryption. In particular, computing the shift amounts letter-by-letter on paired ptx-ctx
pairs will yield all the required information to obtain the key. Take for instance the previous
encryption example

CTX: csasxoeqhwrfcopyngdrcsasxohtdthz
PTX: cryptodoesreallymeancryptography
SAM: 01234012340123401234012340123401

The derived shift amounts (SAM line) show a clear period of length 5, and can be converted
back into the abcde key in a straightforward fashion.

1.1.3 Breaking Playfair
The Playfair cipher was invented by Charles Wheatstone in 1854 and later on its use was encouraged by
lord Playfair.

To encrypt with the Playfair cipher, the first step is to pick a keyword. Given a keyword a 5×5 table
is filled, row by row, employing the letters of the keyword in order, without repetitions (i.e., if a letter
has already been inserted in the table, it is not inserted again). Finally, fill in the remaining places in the
table with the letters of the alphabet which have not been inserted yet, in alphabetic order. Typically,
when employing the English alphabet the letters I and J are mapped to the same table cell. Figure 1.3
reports an example of table building for the keyword “WINTERMUTE”.

1 2 3 4 5
1 W I N T E
2 R M U A B
3 C D F G H
4 K L O P Q
5 S V X Y Z

(a) Empty Table

1 2 3 4 5
1 W I N T E
2 R M U A B
3 C D F G H
4 K L O P Q
5 S V X Y Z

(b) Keyword inserted

1 2 3 4 5
1 W I N T E
2 R M U A B
3 C D F G H
4 K L O P Q
5 S V X Y Z

(c) Same column

Figure 1.3: Example of the construction of the Playfair cipher table

Once the table is ready, the plaintext is encrypted one digram (pair of letters) at once. The encryption
of a digram depends on the position of its letters within the table according to three rules depicted in
Figure 1.4 In case the positions of the two letters of the digram occupy the corners of a proper rectangle
on the table, each one of them is encrypted with the one lying on the opposite corner of it, row-wise. For
instance, in the example the digram MZ is encrypted as BV. In case the letters are aligned row wise, each
one is encrypted taking the first one on its right, wrapping around the table if needed. In the example
RU gets encrypted to MA. Finally, if the letters lie on the same column, each one is encrypted with the
one right below it, again wrapping around the table if needed. In the example IL is encrypted as MV.

1. How large is the keyspace of Playfair? Is it amenable to a bruteforce attack?

2. Break Playfair with a known ciphertext only attack.
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1 2 3 4 5
1 W I N T E
2 R M U A B
3 C D F G H
4 K L O P Q
5 S V X Y Z

(a) Different row/column

1 2 3 4 5
1 W I N T E
2 R M U A B
3 C D F G H
4 K L O P Q
5 S V X Y Z

(b) Same Row

1 2 3 4 5
1 W I N T E
2 R M U A B
3 C D F G H
4 K L O P Q
5 S V X Y Z

(c) Same column

Figure 1.4: Playfair encryption rules: plaintext in red, ciphertext in green

3. Break Playfair with a chosen plaintext attack. Can you do better than known ciphertext only?

4. Break Playfair with a known plaintext attack. Can you do better than chosen ciphertext only?

Solution:

1. Considering that each Playfair table yields a different encryption map, the keyspace for
playfair is 25!. Recalling that ln(25!) ≈ (25 ln(25) − 25 + ln(25)) we get a keyspace of
≈ 2120. A straightforward bruteforce approach is thus out of question.

2. Observe that, given a specific digram, the Playfair cipher will encrypt it always to the same
digram. Consequentially, it is basically the two-letter analog of a simple substitution cipher.
The Playfair cipher can be broken simply through digram frequency analysis in the same way
a letter substitution cipher is.

3. Breaking playfair via chosen plaintext attack can be easily done supplying a text made out
of all the possible (262 = 676) digrams, and tabulating the answers of the encryption oracle.
The total plaintext length is 1352 characters. Albeit this will not yield the actual 5 × 5
encryption table employed in the usual construction of the cipher, the tabulated information
equivalent to it.

4. Breaking Playfair via known plaintext attacks can be done examining the encrypted digrams
output by the encryption oracle, and filling in gradually the 5× 5 encryption table solving a
constraint satisfaction problem akin to Sudoku.
Alternatively, the attacker may simply re-apply the strategy employed for the chosen plaintext
attack, assuming that all digrams will eventually occur in the plaintext. Assuming that all the
digrams are equally probable would yield an expected plaintext length of 1352 log(1352) ≈
9700 letters.

Consider the ciphertext of a Playfair cipher and provide a reasonable estimate for its entropy under the
assumption that the source message is in English and the key is picked uniformly over all the possible
25! keys.

Solution:

A first rough estimate can be provided noting that a Playfair cipher never encrypts a letter into
itself due to its algorithm. Thus assuming coarsely that the probability of a ptx letter being
enciphered into one of the possible ctx ones are equal, we get a first rough estimate H(C) ≤
−
∑
c∈C Pr(C = c) log2(Pr(C = c)) = −

∑
c∈C

1
24 log2( 1

24 ) = log2(24) ≈ 4.6b considering the
ciphertext alphabet to be made of single characters.

9



A. Barenghi - G. Pelosi

1.1.4 Breaking Nihilist
The Nihilist cipher was employed by both the members of the Nihilist movement, when emprisoned by
russian czars and US prisoners in the Vietnam war.

In order to encrypt a message with the Nihilist cipher, two keywords k1 and k2 are needed. The first
keyword is employed to build a table in the same way the Playfair cipher does (see previous exercise).

For the Nihilist cipher, the row index and column index of the table are the relevant portion of it.
The table is in fact used as to encode each plaintext letter as the row index/column index pair where it
appears in the table. The second keyword is also encoded following the same scheme. Note that, this
encoding effectively reduces the number of symbols of the ciphertext alphabet down to 5. This technique
had been known for a long time even then as a Polybius Square, as the greek historian and scholar
Polybius was (and is) credited with inventing them.

Table 1.1: Polybius Square constructed employing WINTERMUTE as the key

1 2 3 4 5
1 W I N T E
2 R M U A B
3 C D F G H
4 K L O P Q
5 S V X Y Z

For instance, employing Table 1.1 the word Rincewind would be encoded as 21 12 13 31 15 11 12
13 32. Once both k2 and the plaintext have been encoded as numbers, the Nihilist ciphertext is obtained
as follows: given the length l2 of k2, the i-th ciphertext element is obtained as the sum of the i-th encoded
plaintext number with the (i mod l2)-th encoded k2 element. For instance, picking k2=luggage → 42
23 34 34 24 34 15 we compute:

PTX: 21 12 13 31 15 11 12 13 32
KEY: 42 23 34 34 24 34 15 42 23
CTX: 63 35 47 65 39 45 27 55 55

and get 633547653945275555 as ciphertext .

1. Let l1 and l2 be the key lengths of the two Nihilist keys; how large is the Nihilist cipher keyspace?

2. Break Nihilist with a known ciphertext only attack.

Solution:

1. The first Nihilist key is only employed to generate the encoding table in the same way as
it was in Playfair, thus, there are 25! ≈ 284 tables. The second key keyspace is simply
26l2 ≈ 24.6l2 wide, thus, combining the effect of the two keys we obtain a 284+4.6l2 sized
keyspace. A brute force approach is way out of question.

2. Exploiting the fact that the encoding table acts digram-wise, it is easy to see that Nihilist
is simply a digram-based version of the common Vigenére cipher, and can thus be broken
exploiting the same technique.
In particular, considering the ciphertext as a sequence of symbols, each one constituted of
two digits, Kasiski examination can be applied to it retrieving the length n of the second key.
Once this has been done, note that the encoding provided by the Polybius square is a simple
monoalphabetic substitution, and thus, a ciphertext symbol in a given position i mod n will
be the result of two subsequent fixed monoalphabetic substitutions applied to the plaintext
(the Polyibius encoding, and the addition). It is thus possible to apply frequency analysis
to the two digit symbols of the ciphertext, retrieving the n values of a key equivalent to

10
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performing both the monoalphabetic substitutions at once.
To optimize the analysis, note that the final key addition is performed with a simple sum.
As a consequence some of the values for the elements of k2 may leak more easily if they
are high. For instance, assume that the value of a ciphertext element is ≥ 100; the only
admissible values for the key are the ones in [45, 55].

1.2 Permutation Ciphers

1.2.1 A simple permutation cipher
Take π to be the following permutation of the elements {1, . . . , 8}:

π =

(
1 2 3 4 5 6 7 8
4 1 6 2 7 3 8 5

)
Compute the permutation π−1 and decrypt with it the following ciphertext:

ETEGENLMDNTNEOORDAHATECOESAHLRMI

Solution:

From the previous notation, it is easy to note that the inverse permutation is

π =

(
4 1 6 2 7 3 8 5
1 2 3 4 5 6 7 8

)
and obtain “Gentlemen really don’t read each others email” as the plaintext

1.2.2 Matrix Based Permutation Cipher
A given transposition cipher (a.k.a. permutation cipher) splits the plaintext into snippets of equal
size of k bytes (representing ASCII characters) each and rearranges every snippet separately using a
permutation key. For example, for k = 3 the key π = (2 1 3) can be used and the text minefield ahead
will be encrypted as imnfeileda haed. This transposition cipher can be described using the following
encryption matrix:

[x1x2x3]

 0 1 0
1 0 0
0 0 1

 = [y1y2y3]

where [x1x2x3] is the plaintext and [y1y2y3] is the ciphertext. Note that, a permutation matrix (as the one
shown above) is defined over 0, 1, and each column includes a single cell different from zero. Remember
that the set of permutations with a given length defines a group with the internal composition law being
the natural composition (i.e., subsequent applications) of two permutations over the same plaintext
snippet.

• Find the corresponding decryption key and show the decryption matrix, and decrypt the ciphertext
ememtenoteusady.

• Suggest how to attack this cipher, specifying one or more attack models.

• To increase the difficulty of breaking the cipher Alice decided to encrypt her plaintext twice using
the transposition cipher but with two different keys. She considers three options, one with k1 =
k2 = 3, another one with k1 = k2 = 5 and one with k1 = 5, k2 = 6. Will these three schemes
increase the complexity of breaking the cipher?

Solution:

11
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• The decryption key can be obtained as the inverse permutation of π = (2 1 3), which is
π−1 = (2 1 3) (π is actually its own inverse). The corresponding decryption matrix is : 0 1 0

1 0 0
0 0 1

−1 =

 0 1 0
1 0 0
0 0 1


The decrypted plaintext is : meetmeontuesday

• A simple permutation cipher is vulnerable to a chosen plaintext attack: it is sufficient to
encrypt a long sequence of distinct characters (f.i, the alphabet) to infer from the corre-
sponding ciphertext the permutation. A known plaintext attack can be able to infer the
permutation in a similar fashion, although some ambiguity from repeated letters may ensue.
However, given enough plaintext material, such ambiguities can be solved.

• The choice of k1 = k2 = 3 does not increase the overall security margin: it is possible
to obtain a length-3 permutation equivalent to the subsequent application of 2 lenght-3
ones. Similarly, the choice of k1 = k2 = 5 provides the same security margin of a single
length-5 permutation. Picking k1 = 5, k2 = 6 instead provides at best the security margin
of choosing a permutation with length lcm(5, 6) = 30.

1.3 Composition of historical ciphers

1.3.1 Double Substitution
Suppose you have two substitution ciphers Sk1(m) and Sk2(m) with the substitutions defined in the
following table.

m ABCDEFGHIJKLMNOPQRSTUVWXYZ
Sk1(m) EKMFLGDQVZNTOWYHXUSPAIBRCJ
Sk2(m) AJDKSIRUXBLHWTMCQGZNPYFVOE

Describe the cipher c=Sk1(Sk2(m)), and comment on its security.

Solution:

The composition of two substitution ciphers gives again a substitution cipher. Consequently, the
composition of two substitution ciphers is no stronger than a single substitution cipher.

1.3.2 Double Vigenére
Given two keys for a Vigenére E(·) k1 and k2 with respective lengths l1, l2:

1. Comment on the security of Ek1(Ek2(·)): is it better or worse than Ek1(·)?

2. Comment on the security of Ek1(Ek2(Ek1(·))): is it better or worse than Ek1(Ek2(·))?

Solution:

1. The change in security depends on the values of l1 and l2:

• If l1 = l2 the security margin of Ek1(Ek2(·)) is exactly the same of Ek1(·). This is due
to the monoalphabetic substitutions corresponding to each letter of k1 acting separately
on the ones corresponding to the letters of k2. Since the keyword lengths match, it is
possible to obtain a k3 equivalent to the effect of applying a Vigenére cipher with k2
followed by one with k1. In particular k3 = Ek1(k2).

12
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• If l1 6= l2 the security margin of Ek1(Ek2(·)) greater or equal to the one of Ek1(·).
In particular, the application of the two ciphers is equivalent to the one of a Vigenére
cipher with key k3 as long as the least common multiple l3 of l1 and l2 and built as
follows: concatenate k2 l3

l2
times, obtaining s, then k3 = Ek1(s).

2. For the reasons explained before, applying once more Ek1(·) does not change the security
margin.

1.3.3 Double Permutation
Consider two permutation ciphers Pk3(m) and Pk4(m) which take blocks of six letters and permute them
according to the permutations

k3 =

(
1 2 3 4 5 6
6 3 5 4 1 2

)
k4 =

(
1 2 3 4 5 6
2 5 4 3 6 1

)
Describe the cipher c = Pk3(Pk4(m)), and comment on its security.

Solution:

The composition of two permutation ciphers acting on 6 characters at once gives again a permu-
tation cipher acting on 6 characters at once. It is thus possible to define a permutation Pk5 which
performs the equivalent action of applying Pk4 and Pk3 , and is still a permutation on 6 elements.
Consequently, the keyspace does not grow, thus composition of two permutation ciphers defined
on sets of elements with the same length is no stronger than a single permutation cipher.

13
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1.3.4 Mixing Substitutions and Permutations
Take the substitution and permutation ciphers from the previous questions and comment on the security
of c = Sk1(Pk3(m)) and c = Sk1(Pk3(Sk2(Pk4(m)))).

Solution:

The composition of two substitution-permutation ciphers gives again a substitution-permutation
cipher (as the operations commute one can re-arrange the composition such that we have
substitution-substitution- permutation-permutation which we know is the same as substitution-
permutation) Consequently, the composition of two substitution-permutation ciphers is no stronger
than a single substitution-permutation cipher.

Consider the three ciphers Kk5(m), Kk6(m), Kk7(m) which ’exclusive-ors’ (adds) blocks of six letters
with the keys (modulo 26)

k5 = AHIXGA
k6 = LIQRTS
k7 = QRYLAF

Consider the cipher c = Kk5(Sk1(Pk3(Kk6(Sk2(Pk4(Kk7(m))))))) Comment on its security. What about
the security when k1, . . . k4 are made public but the secret key is simply k5, k6 and k7?

Solution:

The composition of layers of addition-substitution-permutation ciphers is stronger than a single
such layer as the (modular) addition does not commute with the other operations! Making the
keys k1, . . . , k4 public does not seem to affect security. Essentially the S and P players introduce
confusion and diffusion, with the K layers making the output depend on the key.
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1.4 Enigma
With the advent of mechanical support to encryption, substution ciphers found their embodiment in
rotor machines. Among them the most famous example is Enigma, the encryption machine employed
by the Germans during WWII to protect the confidentiality of their communications. The key idea of
the mechanism is to mechanically apply a substitution cipher, picking a fresh substitution map for each
character. Following the picture in Figure 1.5, we will delineate how this substitution is done:

1. The current supplied by a battery (1) flows to the switches of a keyboard (2): pressing one of the
keys corresponding to a letter closes the corresponding switch, selecting it as the current plaintext.

2. The current flows to a plugboard, where a plug socket for each letter ispresent. An empty socket
allows the current to flow through acting as a short circuit, mapping the letter to itself (3). A
populated socked acts as a letter swapping device, effectively exchanging the mapping the letter to
the one in the socket where the other end of the cable is plugged ((7) and (8)).

3. The current flows to a fixed connector (4), and henceforth to a set of cogs, named rotors. Each
rotor has two sets of contacts, one for each side, which are cross wired (5). The rotors effectively
act as letter substitution tables.

4. Once the current has flown through the rotors, it passes through a so-called reflector : it is a fixed
connector which maps back the incoming current into the circuit corresponding to a different letter.

5. The current flows back through the plugboard once again, and, finally through a lightbulb (there
is a lightbulb for each letter of the alphabet). The lit-up letter is the actual ciphertext.

In addition to this, it is possible to rotate the outgoing contacts of a rotor with respect to the inner
wirings, effectively defining 26 possible substitution maps for each rotor. This setting, known as ring
setting or ringstellung, does not change during an encryption operation. Each time the operator presses a
key on the keyboard, the first rotor is advanced by one step, changing effectively the applied substitution
map. Each of the rotors has a pin in correspondence to one specific letter: this pin lodges into a notch in
the following rotor, effectively moving the next one once in a full turn of the previous. Moreover, if the
rotor is the middle one, it causes the left rotor to step on once as well as itself (this mechanism is known
as double stepping). The rotors can be chosen by the operator during the setup of the machine among a
set provided by the machine constructor: at first only three rotors were available, but their number was
increased to five for infantry operated machines and eight for navy ones. It was also possible to pick the
reflector among a set of available ones.

The secret key of the Enigma cryptoscheme is the actual configuration of the Enigma Machine, that
is: the choice of the rotors, their placement, the ringstellung, their initial positions, the reflector type,
and the plugboard settings.

1. Consider a three-rotor Enigma, where the choice is made among three possible rotors, and the
reflector is picked between two, with a plugboard populated with 6 plugs. Compute the effective
keyspace of the machine.

2. Is it better in terms of security improvement, to add two more rotors to choose from for the
configuration, or add two more cables on the plugboard?

3. Point out the flaws in the Enigma design, and delineate a way to exploit them.

15



A. Barenghi - G. Pelosi

5 5 5 

1 

2 

3 

4 6 

7 

8 

9 

A S D F 

A 
S D F 

A S D F 

Figure 1.5: A diagram of a simplified three rotor Enigma machine. Differs from the full version only for
being defined on a reduced alphabet

Solution:

1. The best way to compute the Enigma keyspace is to compute separately the possible con-
figurations of each part separately, and then combine them together.

• The choice of three rotors among three implies that there are 3! = 6 possible choices
• The ring settings for the rotors are independent, and each rotor has 26 possible settings,

yielding 263 ≈ 24.7∗3 ≈ 214 possibile settings
• The starting positions of the rotors account for the same amount of possible settings of

the ring settings
• The choice of the reflector accounts for 2 possibilities.
• The plugboard configuration is a little bit trickier to sort out. Consider that, when

adding a cable to a plugboard with o occupied places, there are (26 − o)(26 − o − 1)
possible ways to insert it. Consequentially adding 6 plugs to a plugboard amounts to
(26 · 25) · (24 · 23) · (22 · 21) · (20 · 19) · (18 · 17) · (16 · 15)
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Consequentially, the keyspace of the aforementioned Enigma Machine is 231.5×252.1 ≈ 283,
where the first term takes into account the effects of rotors, reflector and their configuration,
and the second the effect of the plugboard

2. Adding two rotors to the set from which they are chosen improves the rotor choice term
from 3! = 6 to

(
5
3

)
× 3! = 5!

3!(5−3)! × 3! = 60, while adding two more cables adds a factor
(14 · 13) · (12 · 11) = 24024, thus adding two cables is substantially better than adding more
rotors.

3. The main critical flaw of the Enigma machine can be spotted looking at the wiring scheme:
since pressing a key on the keyboard automatically disconnects the corresponding lamp, a
letter will never be encrypted as itself. This observation is the key to Enigma cryptanalysis
as the following actions may be performed:
(a) Assume that the ciphertext contains a long, common word: typically Wettervorhersage

(weather forecast) was used. It is possible to find a portion of the ciphertext which,
letter by letter, does not match any of the letters in Wettervorhersage. Such a portion of
the ciphertext is a possible cipertext for Wettervorhersage. From this point on assume
to be in a known plaintext scenario.

(b) Represent the Enigma machine as follows:

i.e., consider the double circuit obtained from mirroring the rotor set across the reflector.
(c) Consider the following alleged plaintext/ciphertext pair to be known through the anal-

ysis at point (a):

(d) Assume the rotors are in a given position (1 in the Figure) when encrypting the first
character of the plaintext b → d:

And deduce what should the other letters be mapped to according to the following
steps until either a contradiction is obtained (a letter should be mapped to two different
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ones), or all the constraints have been applied. If the rotor configuration respects the
constraints, mark it as a possible one.

(e) Note that the contradictions in the deductions are independent from the effects of
the plugboard → it is possible to bruteforce the configuration of the double scrambler
independently!

(f) Once the double scrambler configuration has been sorted out, Enigma is reduced to the
composition of three substitution ciphers, of which the central one is known.

A detailed description of the Enigma cryptanalysis is available in Nigel P. Smart, Cryptog-
raphy, An Introduction, Chapter 4
http://www.cs.bris.ac.uk/~nigel/Crypto_Book/book.ps

1.5 Principles of Information Theory

1.5.1 Computing the entropy of random variables
Consider the sample space as the outcome of a fair, six-faced die, Ω{1, 2, 3, 4, 5, 6}. Consider three
different random variables on Ω, as follows: X is the number obtained with the die, Y takes values even
and odd depending on the die outcome, and Z takes values low and high depending on whether the die
roll is below 4 or not.

• Compute H(X), H(Y ), H(Z)

• Compute H(X,Y ), H(X,Z), H(Y,Z)

• Compute H(X|Y ), H(Y |X)

Solution:

• Following the definition of entropy we have that H(X) = 6 1
6 log2(6) ≈ 2.58 as all the

outcomes of X are equally probable, and have probability 1
6 . Following the same line of

reasoning, we obtain H(Y ) = H(Z) = 21
2 log2(2) = 2

• To compute the values of joint entropy required, consider the joint probability distributions of
the variable pairs, reported as in Tables 1.2. Applying, in a straightforward fashion the defini-
tion of entropy to them, we have that H(X,Y ) = −

∑
(x,y)∈X×Y Pr(x, y) log2(Pr(x, y)) =

6 1
6 log2(6) ≈ 2.58b (matching the intuition that the uncertainty of knowing the result,

and whether it’s odd or not is the same as knowing the result), H(X,Z) = 2.58b (the
same goes for the result and low or high), and H(X,Z) = −(2 1

6 log2( 1
6 ) + 2 2

6 log2( 2
6 )) =

1
3 log2(6) + 2

3 log2(3) = 0.86 + 1.05 = 1.91b.
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X
Y

odd even

1 1
6 0

2 0 1
6

3 1
6 0

4 0 1
6

5 1
6 0

6 0 1
6

X
Z

low high

1 1
6 0

2 1
6 0

3 1
6 0

4 0 1
6

5 0 1
6

6 0 1
6

Y
Z

odd even

low 2
6

1
6

high 1
6

2
6

Table 1.2: Joint probability distributions for (X,Y ), (X,Z), (Y, Z)
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Chapter 2

Block Ciphers

2.1 Data Encryption Standard

2.1.1 DES-V and DES-W
Consider two ciphers, DES-V and DES-W defined as follows:

• DES-V(k, k1,m) = DES(k,m)⊕ k1

• DES-W(k, k1,m) = DES(k,m⊕ k1)

where m is the plaintext block to be encrypted, with |m|= 64 bit, and k, k1 indicate two symmetric keys
with lengths |k|= 56 bit e |k1|= 64 bit respectively.

• Point out for each cipher the complexity of a bruteforce attack, showing how many ptx-ctx pairs
are needed.

• Discuss the security margin of DES-V and DES-W with respect to the common DES-X(k, k1, k2,m) =
k2 ⊕ DES(k;m⊕ k1)

Solution:

Discussion for DES-V: A first impression suggests that a single (m, c) pair should be enough for
a bruteforce attack. However, there are 256 possible key pairs k, k1 which make the equivalence
DES(k,m)⊕ c = k1 hold. Employing another ptx-ctx pair (m′, c′), it is possible to devise a proper
attack on the scheme. Consequentially, with two pairs we can extract the correct value of the key
k since the following relations must hold:

• DESk(m)⊕ c = k1

• DESk(m′)⊕ c′ = k1

Consequentially, also DESk(m) ⊕ DESk(m′) = c ⊕ c′ holds. It is thus possible to perform a
bruteforce on the value of the key k employing only 257 DES encryptions. Once we obtain the
value of k, we can derive the key k1 as k1 = DESk(m)⊕ c. Summing up, the total effort to crack
DES-V is at most 257 DES encryptions and two ptx-ctx pairs against a total key length of 120 bits.

Discussion for DES-W: The same line of reasoning applies to DES−1k (c)⊕ DES−1k (c′) = m⊕m′.
Therefore, the total effort to crack DES-W is at most 257 DES encryptions and two ptx-ctx pairs
against a total key length of 120 bits.

Comparison with DES-X: Both DES-V and DES-W offer a significantly lower security margin
than DES-X, as basically the bruteforcing effort is the same of a single DES, while the DES-X
scheme needs an effort in the range of 2120 DES operations with a key length of 2184.
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2.1.2 DES-A
Consider a strengthened version of DES, DES-A defined as follows

DES-A(k1, k2,m)
def
= DES(k1,m� k2)

where m is the plaintext, k1 a 56-bit key k2 a 64-bit key, and � the common addition modulo 264.
Assuming that an attacker is granted access to two plaintext/ciphertext pairs (ma, ca), (mb, cb) coming
from two unrelated plaintexts ma,mb, which is the minimum computational effort required to breach
the security of DES-A?

Solution:

Although at a first glance it may seem that no better strategy than a bruteforce effort through a
2120-bit wide keyspace is possible, the attacker is actually able to reduce the computational effort
significantly. Defining the intermediate state i of DES-A as the sum of the plaintext with k2,
notice the fact that

ia � ib = (ma � k2) � (mb � k2) = ma �mb

where � is the subtraction modulo 264. The attacker is able to obtain from the two plain-
text/ciphertext pairs the value ma � mb easily. Exploiting this value, the attacker is able to
bruteforce the value of k1 independently through computing the candidate values for īa and īb as
īa = DES−1(k1, ca) and īb = DES−1(k1, cb) and checking whether īb� īb = ma�mb. This can
be performed with a worst-case computational cost of 2 · 256 DES decryptions. When the correct
value of k1 is retrieved , the attacker is simply able to compute the value of k2 as either ia �ma

or ib �mb at the cost of a single subtraction. The security margin of DES-A is thus reduced at
257 DES encryptions.
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2.1.3 DES Collision attacks
DES is a 64-bit block cipher which uses a 56 bit key. We now consider the CBC mode of operation.
Assuming we encrypt a very large amount of data with the same key, it is possible that two different
ciphertext blocks ci, cj are the same.

• Does the fact that ci = cj with i 6= j leak any information regarding the plaintext blocks mi,mj?

• Does replacing DES with 3DES avoid the information leakage?

• How can we protect ourselves against this attack?

Solution:

• We recall that a ciphertext block ci in CBC mode is the result of ci = DESk(ci−1 ⊕mi),
for all i ≥ 1, c0 = iv. Thus, in case ci = cj for some i, j, i 6= j we can deduce that
ci−1 ⊕mi = cj−1 ⊕mj (i.e. the inputs to the DES cipher are the same). Therefore the
following differential information on the plaintext blocks is leaked: mi ⊕mj = ci−1 ⊕ cj−1.
For instance, it is possible to detect if two encrypted plaintext blocks are the same.

• If we replace DES by 3DES the block length of the cipher primitive will remain the same. As the
probability of a collision (assuming both DES and 3DES to be equally random permutation of
bits) depends only on the block size, the security against the collision attack is not increased.

• The only way to protect against this attack, while still employing the CBC mode of operation,
is an increase in the cipher primitive block size, to lower the probability of a collision. A
viable alternative is to change the mode of operation of the cipher, for instance adopting
the counter mode.
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2.1.4 DES Block Widening
The DES cipher suffers from both a short key length (DES is in fact practically breakable through
straightforward exhaustive search), and a small block size (64 bit). Figure 2.1 proposes three alternatives
to combine 4 DES primitives to achieve a higher security margin

DES
K1

DES
K2

64b64b

64b64b

DES
K1

DES
K2

64b64b

Alternative 1

DES
K1

DES
K1

64b64b

64b64b

DES
K2

DES
K2

64b64b

Alternative 2

DES
K1

DES
K2

64b64b

64b64b

DES
K2

DES
K1

64b64b

Alternative 3

Figure 2.1: Three schemes to widen DES block size to 128 bits, employing two different keys.

• Do the proposed alternatives yield an increased security block cipher with respect to a single DES,
against an attacker with a limited amount of storage (e.g. less than 1GB).

• Do the proposed alternatives yield an increased security block cipher with respect to a single DES,
against an attacker with an unlimited amount of storage?

Solution:

• The computational effort to break Alternative 1 is only marginally higher than the one of
breaking a single DES: in fact, the attacker is able to bruteforce separately K1 and K2 with
a worst-case cost of 256 · 2 DES encryptions. The total computational effort is thus 258.
Alternative 2 requires the attacker to exhaustively search for both K1 and K2 together, thus
yielding a 256 · 256 computational effort. Similarly, also Alternative 3 requires a 256 · 256
computational effort.
• Allowing the attacker to use unlimited storage, Meet-in-the-Middle attacks become feasible.

This approach allows to reduce the computational complexity to break Alternatives 2 and 3
at the expense of a significant amount of storage. In particular, Alternative 2 can be attacked
computing, and storing in an indexed table, the values of the decryption of a ciphertext with
every possible K2, costing a 256 effort in both time and space. Once this has been done,
computing the result of the encryption of the plaintext with all the possible values for K1,
and checking whether the result matches an entry in the table, will effectively reveal the
correct value for both K1 and K2 at the cost of 256 DES encryptions. The computational
effort is thus reduced from 256 ·256 to 2 ·256, plus 256 memory slots. Concerning Alternative
3, it is possible to mount a similar attack, although with higher costs. The first phase
of the meet in the middle attack memorizes in two indexed tables the results of both the
encryption of the plaintext, and the decryption of the ciphertext with all the possible values
for K2: the cost of such an operation is 257 in both time and space. Once the tables are
complete, computing the result of both the encryption and the decryption of plaintext and
ciphertext with all the possible values of K1 and looking up for them in the table will yield
the correct value of both K1 and K2 with an additional 257 computational effort. Summing
up, breaking Alternative 3 requires a computational effort of 2 · 257 and 257 memory slots.
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2.2 Modes of Operation

2.2.1 Error Recovery in CBC and ECB
How many steps are required for error recovery from a ciphertext transmission error in ECB and CBC
modes?

Solution:

• For ECB: just one. The decryption of every block is fully independent

• For CBC: two blocks. The decryptions going wrong will be the one of the incorrect ciphertext,
and the one where the incorrect ciphertext is used as a pad.

2.2.2 CBC Malleability
Assume a disk volume is fully encrypted through AES-256-CBC with a properly selected random IV.
Can you exploit the encryption scheme to conduct malicious activity on the disk? Justify the answer
and propose an effective countermeasure

Solution:

Yes, recalling that CBC provides confidentiality but not integrity. In particular, it is possible to
alter the contents of the disk of a block at the cost of causing a misdecryption of the previous
one (or, tampering with the IV, to alter the first block with no decryption errors). In particular,
flipping a bit in a ciphertext block will flip the corresponding bit in the plaintext obtained from the
decryption of the next block as depicted in Figure 2.2 Such an exploitation of the CBC malleability
allows the attacker to change standard known disk areas (e.g. MBR) in an arbitrary fashion1.

block cipher
decryption

Key

Plaintext

Ciphertext

Initialization Vector (IV)

block cipher
decryption

Key

Plaintext

Ciphertext

block cipher
decryption

Key

Plaintext

Ciphertext

Figure 2.2: Examples of malleability of the CBC encryption: in blue a malleability attack altering in
a known way the IV, in green the one altering a ciphertext block, with the resulting decryption error
highlighted in red, and corresponding bit flips in green

Such a data-alteration attack can be prevented either through adding error detection codes to
the blocks, or employing a proper mode of operation for data at rest encryption such as the XTS
mode of operation.

1For a practical explanation on how to lead the attack see http://www.jakoblell.com/blog/2013/12/22/
practical-malleability-attack-against-cbc-encrypted-luks-partitions/.
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2.2.3 CTR With Repeated IV
A remote file storage provides encryption support on the stored files, employing AES-256-CounTeR ,
initializing the counter with a 16 byte fixed user ID. Anyone, upon registration, deposits a secret key
which will be used to encrypt his files, and is bound to his user ID. Anyone can ask for the encryption
and storage of a file through simply providing the ID for which it should be stored. Anyone can ask to
obtain an encrypted file bundle, providing its name.

1. Assume you know that the user with ID 44722e4a616d65734d6f726961727479 has stored a file of
your interest, of which you know the name QlanzvpfbsnaNfgrebvq. Can you obtain the plaintext
contents of it?

2. Propose a solution to mitigate this issue, without resorting to authentication of the users.

Solution:

1. Recalling that the CTR mode of operation basically employs a block cipher to obtain a
pseudorandom keystream which is then xor-added to the plaintext to obtain the ciphertext.
Since the pseudorandom keystream depends only on the secret key and the value of the IV,
in the described setting, it will be unique, and always the same, for each user. It is thus
possible to retrieve the cleartext of QlanzvpfbsnaNfgrebvq as follows:

(a) Retrieve the encrypted version of QlanzvpfbsnaNfgrebvq
(b) Generate a zero-filled file as big as QlanzvpfbsnaNfgrebvq
(c) Upload the zero-filled file asking for it to be encrypted

for ID 44722e4a616d65734d6f726961727479
(d) Retrieve the result of the zero-filled file encryption, add it via xor to

QlanzvpfbsnaNfgrebvq and get the cleartext.

2. Changing the IV of CTR mode is a paramount requirement to its security. The previous
attack can be easily thwarted picking a random IV for each file.
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2.2.4 Faulty Disk Encryption
Rosen Association inc. mandates the use of encrypted disk volumes for its own employees enforcing the
following:

• All the disks have two partitions, one containing the OS binaries (with a non-integrity checking
filesystem), while the other hosts the employee data. The OS partition is to be encrypted with
AES-256-CBC with randomized IV, while the user data partition should employ AES-256-CTR,
using the string “NEXUS6-ROSENInc.” as IV.

• All the employee partitions are set up by the system administrator which, during formatting, takes
care to fill the space within the encrypted volume with zeroes, so to fill the effective physical
diskspace with random data.

• The employees are enforced to pick their disk encryption passwords as 16 character random strings
containing decimal digits. The password is hashed through SHA-2-256 to fill in the AES-128 key.

(a) Discuss the choices of Rosen inc. concerning the choice of the encryption algorithm for the OS
partition, highlighting issues and proposing a way to fix them.

(b) Discuss the choice of the encryption algorithm for the employee partition, and the decision of the
system adminstrator to wipe the internal space of the disk volume.

(c) Discuss the password policy chosen by Rosen, providing a quantitative estimate for the attacker
effort to be spent to completely break the whole system, in the most efficient way possible

Solution:

(a) Picking a block cipher in CBC mode, without any integrity check, allows an attacker to
exploit the CBC malleability to his own advantage. In particular, considering the case of a
disk volume where an OS is stored, it is possible to alter partially the OS binaries without
deciphering the volume.

(b) The choice of a counter-mode of operation for disk encryption is not problematic as long
as the CTR IV is picked at random. Given the choice of Rosen inc. to employ a fixed IV,
the pseudorandom keystream obtained out of the AES-128 in CTR mode is the same for
all the partitions of the employees using the same password. This in turn allows to extract
information without the secret key, adding via xor two instances of encrypted data with
the same password (e.g. two full disk dumps taken in different moments). The decision of
the system administrators to fill with zeroes the partitions effectively worsens the issue: the
attacker is basically provided with the whole keystream, if he is able to dump the disk of a
laptop right after it has been issued.

(c) Considering the password policy, the effective password space is 1016, which is equivalent to
roughly 253. This in turn implies that a full exhaustive search for the password is within
feasibility for moderately motivated attackers. As a further issue, the passwords are used
as-is, without any salted hashing scheme, thus allowing an attacker to successfully exploit
TMTO strategies.
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2.2.5 Altering messages with CBC and CTR

Two friends agree on using a block cipher for encryption and need to choose a mode of operation between
CBC and CTR. An adversary is able to intercept and change messages exchanged between them. Now
consider the following scenarios.

(a) For some messages, the adversary knows the first plaintext block M1 and wants to replace it by
another block A1 of his choice, leaving the rest of the message unchanged.
Show that the adversary can achieve this if CTR mode is used.
Do you think he can do it with CBC mode?

(b) The adversary knows that in some messages the plaintext content of the last encrypted block is a
randomly generated secret value v. Decide for the two modes whether the adversary can corrupt
these blocks, so that the receiver of the communication gets a message that looks good after
decryption, but contains the wrong secret value v.

Solution:

(a) The adversary can achieve this if the encryption is in CTR mode.
The encryption of the first block is C1=M1⊕Enck(IV + 1), from which he can compute
Enck(IV+1)=M1⊕C1. He can successfully replace C1 with C ′1=A1⊕Enck(IV+1) through
computing C ′1=A1⊕(M1⊕C1). The encryption of the other blocks remains unaltered.
For CBC mode, we need to look at the decryption process and observe that:
M1=Deck(C1)⊕C0, thus Deck(C1)=M1⊕C0 (Both M1 and C0 are known by the adver-
sary). The adversary cannot change C1, since that would affect the correct decryption of
C2. Instead, he will replace C0 with C ′0, where C

′
0 is such that A1=Deck(C1)⊕C ′0. Solving

for C ′0, he gets C ′0=A1⊕Deck(C1)=A1⊕(M1⊕C0).
(b) For both modes the adversary can replace the last ciphertext block with any other block.

The decryption of all blocks but the last one will provide a correct message. The plaintext
corresponding to the last block will not be distinguished from a corrupt plaintext, as it
includes a random value v. Therefore, in the proposed scenario there is no way for the
receiver to detect the alteration.

2.3 Block Cipher Cryptanalysis

2.3.1 S-Box Design
While designing a new 4-to-4 bit S-Box, we came up with the following three definitions (Ij is the j-th
input bit, Oj is the j-th output bit):

1. ∀ j ∈ {0, 1, 2, 3}, Oj = Ij−3 mod 4 ⊕ Ij−2 mod 4 ⊕ Ij+5 mod 4

2. ∀ j ∈ {0, 1, 2, 3}, Oj = (¬Ij−3 mod 4 ∧ Ij−2 mod 4) ∨ (Ij−3 mod 4 ∧ ¬Ij−2 mod 4)

3. ∀ j ∈ {0, 1, 2, 3}, Oj = Ij−3 mod 4 ⊕ Ij−2 mod 4 ∧ Ij
Highlight which choice among these three is the most secure against linear and differential cryptanalyses,
and describe why the other two choices are vulnerable.

Solution:

The first S-box definition is trivially linear, thus it does not offer any resistance against linear and
differential cryptanalyses. The second S-Box is equivalent to ∀ j∈{0, 1, 2, 3} Oj=Ij−3 mod 4 ⊕
Ij−2 mod 4, and is thus linear too, having the same weakness of the first one. The third S-box,
albeit not particularly strong in fact, it is the stronger one of the three as it incorporates a nonlinear
term.
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2.3.2 Linear and Differential Cryptanalysis - (I)
Consider the simple substitution-key addition cipher depicted in Figure 2.3
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Notation for Linear 
and differential tables

X0
X1
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X3

Y0
Y1
Y2
Y3

Example :
Linear input value 

0xE = <1110>2      X0    X1    X2 

Example :
Differential input Value

0xE =     X=1110 

Figure 2.3: Simple cipher with only substitution and key addition layers

Given the reduced DES Sbox described in Table 2.1 and its linear biases and differential probabilities
described in Table 2.2 and Table 2.3
As an exercise, complete the following tasks:

• Point out the input-output relation(s) providing the best linear bias(es) for the considered SBox

• Point out the input-output difference relation(s) providing the best differential probability(-ies) for
the considered SBox

• Up to which point (operation of the cipher, be it a substitution or a round key addition) should
we provide approximations?

• Considering the path depicted in Figure 2.4, and the provided tables, compute the linear bias for
the expression highlighted expliciting the relations chosen to approximate each Sbox

• Considering the path depicted in Figure 2.4, and the provided tables, compute the differential
probability for the expression highlighted expliciting the differentials chosen to approximate each
Sbox

• Point out how many ptx-ctx pairs are required to carry out the two aforementioned attacks
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Figure 2.4: Approximation path for the cipher
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Table 2.1: SmallDES 4×4 Sbox, values in hexadecimal
Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

Table 2.2: Linear biases table for the SmallDES SBox (bitwise input relations on rows, bitwise output
relations on columns). Biases are expressed in 16th. We recall that given a bias εa,b, the probability for
the relation a = b to hold is 1

2 + εa,b. Red values are positive biases, blue values are negative biases.
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 -2 -2 0 0 -2 6 2 2 0 0 2 2 0 0
2 0 0 -2 -2 0 0 -2 -2 0 0 2 2 0 0 -6 2
3 0 0 0 0 0 0 0 0 2 -6 -2 -2 2 2 -2 -2
4 0 2 0 -2 -2 -4 -2 0 0 -2 0 2 2 -4 2 0
5 0 -2 -2 0 -2 0 4 2 -2 0 -4 2 0 -2 -2 0
6 0 2 -2 4 2 0 0 2 0 -2 2 4 -2 0 0 -2
7 0 -2 0 2 2 -4 2 0 -2 0 2 0 4 2 0 2
8 0 0 0 0 0 0 0 0 -2 2 2 -2 2 -2 -2 -6
9 0 0 -2 -2 0 0 -2 -2 -4 0 -2 2 0 4 2 -2
A 0 4 -2 2 -4 0 2 -2 2 2 0 0 2 2 0 0
B 0 4 0 -4 4 0 4 0 0 0 0 0 0 0 0 0
C 0 -2 4 -2 -2 0 2 0 2 0 2 4 0 2 0 -2
D 0 2 2 0 -2 4 0 2 -4 -2 2 0 2 0 0 2
E 0 2 2 0 -2 -4 0 2 -2 0 0 -2 -4 2 -2 0
F 0 -2 -4 -2 -2 0 2 0 0 -2 4 -2 -2 0 2 0

Table 2.3: Differential probabilities (expressed in 16th) table for the TinyDES SBox (inputs on rows,
outputs on columns)

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 2 0 0 0 2 0 2 4 0 4 2 0 0
2 0 0 0 2 0 6 2 2 0 2 0 0 0 0 2 0
3 0 0 2 0 2 0 0 0 0 4 2 0 2 0 0 4
4 0 0 0 2 0 0 6 0 0 2 0 4 2 0 0 0
5 0 4 0 0 0 2 2 0 0 0 4 0 2 0 0 2
6 0 0 0 4 0 4 0 0 0 0 0 0 2 2 2 2
7 0 0 2 2 2 0 2 0 0 2 2 0 0 0 0 4
8 0 0 0 0 0 0 2 2 0 0 0 4 0 4 2 2
9 0 2 0 0 2 0 0 4 2 0 2 2 2 0 0 0
A 0 2 2 0 0 0 0 0 6 0 0 2 0 0 4 0
B 0 0 8 0 0 2 0 2 0 0 0 0 0 2 0 2
C 0 2 0 0 2 2 2 0 0 0 0 2 0 6 0 0
D 0 4 0 0 0 0 0 4 2 0 2 0 2 0 2 0
E 0 0 2 4 2 0 0 0 6 0 0 0 0 0 2 0
F 0 2 0 0 6 0 0 0 0 4 0 2 0 0 2 0
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Solution:

• The best (i.e., highest in absolute value) linear biases are achieved by the relations:

– X3 = Y1 ⊕ Y2 ⊕ Y3, bias 6
16

– X2 ⊕X3 = Y0 ⊕ Y3, bias − 6
16

– X2 = Y0 ⊕ Y1 ⊕ Y2, bias − 6
16

– X0 = Y0 ⊕ Y1 ⊕ Y2 ⊕ Y3, bias − 6
16

• The best (i.e. highest) differential probability is achieved by the differential:

– (∆X = 1011 = 0xB,∆Y = 0010 = 0x2) , probability of holding 8
16 = 1

2

• We should provide approximations up to the input of the last nonlinear layer, i.e. the inputs
of the S4· SBoxes

• The linear approximation employed in the highlighted linear path employs the following
relations:

– For S22, the relation X3 = Y1 ⊕ Y2 ⊕ Y3, with bias 6
16

– For S32, the relation X1 ⊕X2 ⊕X3 = Y1 ⊕ Y3, with bias − 4
16

Combining the biases through the Pile-Up Lemma, the approximations holds with bias
22−1( 6

16 )(− 4
16 ) = 3

16

• The differential approximation employed in the highlighted linear path employs the following
relations:

– For S22, the relation ∆X = 0001,∆Y = 0111, with bias 2
16

– For S32, the relation ∆X = 0111,∆Y = 0101, with bias − 2
16

The total probability for the differential approximation to hold is thus: ( 2
16 )( 2

16 ) = 1
64

• The number of ptx-ctx pairs required to carry out the linear cryptanalysis attack is roughly
Np = 1

ε2 , where ε is the bias of the approximation relation, thus in this case Np = 256
9 =

28.4 ≈ 29. For the differential cryptanalysis the estimated number of pairs needed isNp = 1
p ,

where p is the probability for the differential approximation to hold, thus in this case Np ≈ 64

2.3.3 Linear and Differential Cryptanalysis - (II)
Consider the simple SPN block cipher depicted in Figure 2.5, with identical Sboxes Si,j , i, j∈{1, . . . , 4}
defined in Table 2.4.

Table 2.4: Sbox, values in hexadecimal
Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output 2 4 0 8 3 6 12 11 5 10 7 14 15 13 9 1

Complete the following tasks, employing the linear and differential biases tables included.

• Complete, for both linear and differential cryptanalysis, the partial path dashed in Figure 2.5
through choosing suitable (i.e. among the best possible) relations. The chosen relations can be
different for linear and differential cryptanalysis.

• Compute the linear bias and differential probability for your proposed linear/differential paths.

• Which of the two paths you proposed is more advantageous for an attacker? Evaluate the resistance
of the cipher in terms of how many plaintext/ciphertext pairs you need to retrieve the subkey.
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Figure 2.5: Partial approximation path for the cipher

Table 2.5: Linear biases table for the SBox (bitwise input relations on rows, bitwise output relations on
columns). Biases are expressed in 16th. We recall that given a bias εa,b, the probability for the relation
a = b to hold is 1

2 + εa,b.
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
01 0 -2 0 2 0 2 0 -2 2 0 -2 0 2 4 -2 4
02 0 0 -2 -2 -2 2 -4 0 2 2 0 0 0 -4 -2 2
03 0 -2 -2 0 2 0 0 2 0 -2 2 -4 2 0 -4 -2
04 0 4 0 0 0 4 0 0 2 -2 2 2 -2 2 -2 -2
05 0 -2 0 -2 0 2 0 2 4 2 0 -2 0 2 4 -2
06 0 0 2 -2 2 -2 -4 -4 0 0 2 -2 -2 2 0 0
07 0 2 2 -4 -2 0 0 2 -2 0 -4 -2 0 2 -2 0
08 0 4 0 4 2 -2 -2 2 2 2 -2 -2 0 0 0 0
09 0 2 0 -2 2 0 -2 0 0 -2 0 2 6 0 2 0
0A 0 0 -2 -2 0 -4 2 -2 4 0 -2 2 0 0 -2 -2
0B 0 -2 -2 0 4 2 -2 0 -2 0 -4 2 -2 0 0 -2
0C 0 0 4 0 2 2 2 -2 0 4 0 0 2 -2 -2 -2
0D 0 2 -4 -2 2 0 2 0 -2 4 2 0 0 2 0 2
0E 0 0 -2 2 -4 0 -2 -2 -2 2 0 0 2 2 0 -4
0F 0 2 -2 0 0 2 2 -4 0 -2 -2 -4 0 -2 2 0
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Table 2.6: Differential probabilities (expressed in 16th) table for the SBox (inputs on rows, outputs on
columns)

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
01 0 0 2 0 0 2 2 2 4 2 0 0 0 0 0 2
02 0 0 4 0 2 0 2 0 0 0 0 0 4 2 0 2
03 0 0 0 0 4 0 0 0 2 0 4 2 0 2 2 0
04 0 2 2 2 0 0 0 2 0 0 2 0 2 0 2 2
05 0 0 0 0 4 2 2 4 2 0 0 2 0 0 0 0
06 0 0 0 4 0 0 0 0 2 0 0 2 2 0 4 2
07 0 2 0 2 2 0 2 0 2 2 2 2 0 0 0 0
08 0 0 0 0 0 2 2 4 0 0 2 2 2 0 2 0
09 0 2 2 0 0 0 0 0 2 2 0 0 0 2 4 2
0A 0 0 2 2 0 4 2 2 0 0 4 0 0 0 0 0
0B 0 2 2 2 2 0 0 0 0 0 2 0 2 2 0 2
0C 0 0 0 0 0 2 2 0 0 6 0 2 2 2 0 0
0D 0 4 2 2 0 0 0 0 0 2 0 2 2 0 0 2
0E 0 2 0 0 2 4 0 0 2 2 0 2 0 0 0 2
0F 0 2 0 2 0 0 2 2 0 0 0 0 0 6 2 0

Solution:

(a) The linear path should be completed through choosing a linear biases for the S31 and S32

S−boxes starting from X2 and X3 respectively: we pick X2 → X1⊕X3 and X3 → X0⊕X1

with bias −416 and 4
16 respectively. The differential path should be completed through choosing

biases for the S31 and S32 S−boxes starting from X2 and X3 respectively: we pick ∆Y = Y2
and ∆Y = Y0 with bias 4

16 and 4
16 respectively.

(b) The complete linear bias for the relation can be computed piling up the linear biases as
22(−216 ·

−4
16 ·

4
16 ) = 1

32 . The differential bias is computed by combining together all the biases
as 4

16 ·
4
16 ·

4
16 = 1

64 .

(c) Recalling that linear cryptanalysis needs 1
ε2 pairs (d 32

2

1 e = 1024 in our case), while differential
cryptanalysis needs roughly 1

p (d 641 e = 64 in our case) we can state in this differential
cryptanalysis is more effective.

2.3.4 Linear and Differential Cryptanalysis - (III)

Consider a substitution-permutation block cipher with a 128-bit block and a 256-bit key, employing 32
identical 4× 4 bit S-boxes for the substitution layer. The best (i.e., highest) linear bias for the S-Box is
ε= 1

8 , while the highest differential probability is 1
4 . The permutation layer is built so that the 4 output

bits of each S-Box are employed as inputs to four different boxes in the subsequent layer. The diffusion
of the cipher is such that given a change in an S-box input at round i, 4 s-boxes will be involved at round
i + 1, 16 at round i + 2 and all of them from round i + 3 onwards. The cipher round acts on the state
performing with the substitution layer, the permutation layer and the round key addition, in this order.
A single key extra key addition is present before the first round takes place.

(a) Compute the value of a conservative estimate of the linear bias useful for retrieving the last round key
for the described block cipher assuming it is 4 rounds long, and the amount of plaintext-ciphertext
pairs available. Is it possibly broken by linear cryptanalysis?
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(b) Compute the value of the differential probability useful for retrieving the last round key for the
described block cipher assuming it is 4 rounds long, and the amount of plaintext-ciphertext pairs
available. Is it possibly broken by differential cryptanalysis?

(c) Keeping the same round structure, and the same key length, is it possible to render the block linear
and differential cryptanalysis immune? If yes, describe what should be tuned and to which extent.

Solution:

To provide a conservative estimate of the linear bias, assume that the best linear bias can always
be employed to approximate an S-Box. Consequentially, to build a linear approximation able
to retrieve the last round the best achievable linear bias piles up 1 S-Box from round 1, 4 from
round 2, and 16 from round 3, for a total of 21 active S-Boxes, considering for all of them the
best linear bias ε= 1

8 . The bias for the full approximation is thus 221−1( 1
8 )21 = 220 1

262 = 1
242 ,

requiring ≈ 284 plaintext-ciphertext pairs to be exploited. Since a bruteforce over the full
keyspace requires 2256, the cipher is possibly broken by linear cryptanalysis.

Similarly to the linear cryptanalysis case, we will be exploiting the best differential probability
for all the S-Boxes. The number of active S-Boxes does not change with respect to the
previous analysis, thus we obtain a differential probability for the full approximation which
is ( 1

4 )21 = 1
242 , requiring 242 plaintext-ciphertext pairs to be exploited. The cipher is quite

likely to be broken by differential cryptanalysis.

Given the constraints, the cipher can be tweaked to be immune to both cryptanalysis raising
the number of rounds. In detail, adding a round after the fourth activates 32 S-boxes per
added round. To provide linear cryptanalysis immunity, consider that adding round will
provide a multiplicative factor of 2( 1

8 )32) = 1
264 on the linear bias over the current one of

the cipher, raising the number of required ciphertexts by a factor (264) = 2128. Two extra
rounds are thus sufficient to provide linear cryptanalysis immunity (242+256 ptx-ctx pairs
required). Concerning differential cryptanalysis, a round provides a multiplicative factor
on the differential probability equal to ( 1

8 )32 = 296. As a consequence, the differential
probability for r rounds is 242 ·r296. To achieve differential cryptanalysis immunity, it should
hold that 242 · (r − 4)296 ≥ 2256, thus r ≥ 7, i.e. three more rounds should be added.
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Chapter 3

Stream Ciphers

3.1 Linear Feedback Registers

3.1.1 LFSR (I)
Consider an LFSR characterised by the following primitive Connection polynomial: C1(x) = x5 +x2 +1.
Draw the structure of the LFSR and write down both the period of the output sequence and the recurrence
equation of the register.

Solution:

Recalling the definition of the connection polynomial of a length L LFSR as C(x) = 1+
∑L
i=1 cix

i,
we know from the form of C1 that the feedback coefficients of the LFSR under exam are:
c1 = 0, c2 = 1, c3 = 0, c4 = 0, c5 = 1 and L = 5, thus leading to the following structure

⊕ oo

// sj+4 // sj+3 ·

OO

// sj+2 // sj+1 // sj · //

The recurrence equation of the LFSR can be consequently written down as:
sj+5 = sj+3 + sj mod 2.
Since the connection polynomial is primitive, we expect the LFSR to have the maximum achievable
period given the length L = 5, i.e. N = 2L − 1 = 31.

Given the initial state S0 = 〈s4, s3, s2, s1, s0〉 = 〈1, 1, 0, 1, 1〉 write down the first 10 output bits from the
LFSR.

Solution:

Through simple computations employing the LFSR structure drawn before, we obtain:

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9
1 1 0 1 1 0 0 1 0 1
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3.1.2 LFSR (II)
Consider the following sequence of bits which has been output by a LFSR with length L = 5.

Keystream
s0 s1 s2 s3 s4 s5 s6 s7 s8 s9
1 1 0 1 1 1 1 1 0 1

Rebuild the LFSR structure from the output bits and draw the structure of the corresponding LFSR,
stating its connection polynomial.

Solution:

We recall that the each output bit can be obtained as:

sj+L =

L∑
i=1

ci sj+L−i mod 2

Consequently, we can write down, for each clock cycle starting from j = 0 to j = L − 1 the
following equations:

Cycle Output bit equation
j = 0 sL = c1 sL−1 + . . .+ cL s0 mod 2
j = 1 sL+1 = c1 sL + . . .+ cL s1 mod 2
. . . . . . . . . . . .

j = L− 1 s2L−1 = c1 s2L−2 + . . .+ cL sL−1 mod 2

The previous set of equations can be used to build a system of equations, employing as unknowns
the values ci, i ∈ {1, . . . , 5}, in order to rebuild the structure of our LFSR. Such a system looks
like this: 

sL−1 . . . s0
sL s1
...

...
s2L−2 . . . sL−1




c1
c2
...
cL

 =


sL
sL+1

...
s2L−1


As we know the values of s0, . . . , sL−1, we can substitute them in the previous equation system,
thus obtaining the following one:

1 1 0 1 1
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1
0 1 1 1 1




c1
c2
c3
c4
c5

 =


1
1
1
0
1


We now recall from basic linear algebra that the unknowns in the previous system are obtained
through multiplying the inverse of the matrix by the constant terms vector as follows:

c1
c2
c3
c4
c5

 =


0 0 0 1 1
1 1 1 1 1
1 0 0 1 0
0 1 0 1 0
0 0 1 1 0




1
1
1
0
1

 =


1
0
1
1
1


Now we have retrieved the values of the connection polynomial coefficients, and we are thus able
to write it down as:

C2(x) = x5 + x4 + x3 + x+ 1
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We recall the fact that we also know the inner state of the LFSR from the first bits of the
keystream as:

S0 = 〈s4, s3, s2, s1, s0〉 = 〈1, 1, 0, 1, 1〉

Employing these pieces of information we can fully reconstruct the initial state and structure of
the LFSR under exam as:

⊕ oo ⊕ ⊕oo oo

// sj+4 · //

OO

sj+3 // sj+2 · //

OO

sj+1 · //

OO

sj · //

The recurrence equation characterising this LFSR can be written down easily by simply examining
the structure of the connections as:

sj+5 = sj+4 + sj+2 + sj+1 + sj mod 2,

Even if not explicitly required by the exercise, We note that, as C2(x) = x5 +x4 +x3 +x+ 1 is a
primitive polynomial the period of the LFSR N is maximum, and corresponds to N = 2L−1 = 31

3.1.3 LFSR (III)
Consider an LFSR characterized by the following “Connection Polynomial”:
C(x) = x4 + x3 + x2 + x+ 1 ∈ F2[x].

• Draw the structure of the LFSR and write down the recurrence equation of the register

• What is the hypothetical maximum period of the output sequence? What are the consequences of
having an irreducible connection polynomial that is not also primitive?

• Given the initial state S0=〈s3, s2, s1, s0〉=〈1, 0, 1, 1〉, write down all the possible transitions of the
register values

Solution:

• L = 4, C(x) = 1 +
∑L
i=1 cix

i = 1 + x + x2 + x3 + x4 ∈ F2[x] ⇒ c1 = 1, c2 = 1, c3 =
1, c4 = 1

⊕ ⊕oo ⊕oo oo

// sj+3 ·

OO

// sj+2 ·

OO

// sj+1 ·

OO

// sj · //

sj+4 = sj+3 + sj+2 + sj+1 + sj mod 2

• N=2L−1, L=4, N=15 a primitive connection polynomial guarantees that N=2L−1, while
an irreducible but not primitive connection polynomial implies that the period of the output
sequence N is not maximum but it divides 2L−1

• s11 → s7 → s15 → s14 → s13 → s11
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Chapter 4

Cryptographic Hashes

4.0.1 Hashes with multiplicative groups
Let p be a large prime and g be a generator of (Z∗p, ·). Suppose we are considering the function h : Z 7→ Z∗p
for use as a hash function, where h(x) = gx mod p, assuming x to be an arbitrary binary string interpreted
as a positive integer number, i.e.: x∈Z, x≥0.
Note that the compression property of typical hash functions is satisfied by the above definition as
messages x of arbitrary bit-length are hashed into a fixed size digest.

Assuming the computational difficulty of the discrete logarithm problem in (Z∗p, ·), which properties
of cryptographic hash functions does h satisfy? Discuss if h is a sound cryptographic hash function or
not.
Solution:

The first pre-image property is guaranteed by the difficulty of the discrete log problem. The
second pre-image property is not satisfied by the proposed construction as given x and h(x), it
is trivial to compute x′=x+ l(p− 1), with l={1, 2, 3, . . . , } such that h(x′)=h(x). The collision
resistance property is also not satisfied as two messages with the same digest can be found picking
them in the set {x s.t. x = x0 + l(p− 1), l ≥ 1, ∀ x0 ≥ 0}

4.1 Collisions

4.1.1 Saving on digest size
A company is employing RIPEMD-64 hashes (64 bit digest) as an integrity checking mechanism for
files on a disk. The security officer is currently concerned with the security margin against intentional
replacement of files with garbage data and suggests to change the hashing mechanism to SHA-2-256. The
commercial department points out that employing SHA-2-256 would increment the amount of required
disk space and, to reduce the migration costs, proposes to employ SHA-2-256 to hash the file contents,
and store only the first quarter of the digest for integrity checking.

(a) Is the security officer concern well justified? Provide a quantitative motivation to it.

(b) Is it possible to adopt the commercial department solution? Justify quantitatively the answer.

Solution:

(a) Yes: a 64 bit hash implies the possibility of obtaining a collision through exhaustive search
in around 232 operations, which is well within the realm of feasibility.

(b) No: performing the comparison only on the first 64 bits of the digest of SHA-2-256, and
assuming that the bits of the first quarter of the hash follow the same uniform distribution as
the rest of it, it is possible to obtain a partially colliding digest with the same computational
effort of the previous hashing mechanism.
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4.1.2 Strengthening MD5
The MD5 hash function suffers from both collision attacks in 241, simply appending a properly crafted
block to the message and in 218 appending two blocks. Besides this, the size of the MD5 digest (128
bits) limits its maximum collision resistance to 264, which is high, but within range for a well founded
organization. Willing to strengthen the aging MD5, three proposals are made:

• MD5−A(m) is defined as SHA−2−256(MD5(m))

• MD5−B(m) is defined as MD5(SHA−2−256(m))

• MD5−C(m) is defined as AESk(MD5(m)), with a per-user-fixed key k

• MD5−D(m) is defined as SHA−2−256(MD5(SHA−2−256(m)))

Comment on the improvements to the collision resistance of MD5, in particular assuming that 264 is
not a sufficient security margin for current exhaustive search capabilities.

Solution:

• MD5−A does not improve the collision resistance of plain MD5 at all, as a message pair
colliding in MD5 will also collide in MD5−A, since SHA−2−256 is a deterministic algorithm.
It is thus possible to have collisions for MD5−A in 218, appending two well crafted block
padding to any message.

• MD5−B Prevents the attacker from exploiting the collisions relying on the inner structure
of MD5: this is due to the computational infeasibility of controlling the output of the
SHA−2−256 hash function which is the input of MD5 (note that controlling the output
of SHA−2−256 implies that SHA−2−256 is not first-preimage attack robust). However,
MD5−B leaves still open the possibility of obtaining a collision in 264 as the output of the
MD5−B digest is 128 bit wide.

• MD5−C Does not provide any improvements on the collision resistance front just like MD5−C,
as having a deterministic bijective primitive processing the output of the original MD5 will
still result in a collision in MD5 being propagated to the output.

• MD5−D basically feeds the output of MD5−B into SHA−2−256. Thus, as MD5−B has a collision
resistance of 264, and equal inputs to SHA−2−256 will yield equal outputs also MD5−D has
a collision resistance of 264.

4.1.3 Keyed and strengthened SHA-31337
In an effort to provide a strengthened and keyed version of SHA-1, a designer proposes to initialize the
first three out of five variables composing the 160-bit state with three message dependent integers, one
of which is secret. The designer claims that:

• This modification significantly enhances the collision resistance of SHA-1

• The lack of knowledge of the secret state register provides effective security, preventing the signature
of a message by someone who does not know its content.

Prove or dispute the claims of the designer.
Solution:

• The claim concerning the collision resistance of SHA-31337 is false: since the message digest
is still 160 bits wide, the collision resistance of SHA-31337 is still 280

• The secret value employed to initialize the state is effectively long 160
5 = 32 bits, which is

well within the feasibility range for an exhaustive search. To be able to produce “keyed”
signatures on an arbitrary message the attacker simply needs a valid message/keyed-digest
pair on which the exhaustive search for the secret value will be performed.
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4.1.4 Triple Collisions

Consider h : M 7→ D, a cryptographic hash function.

1. How many random samples (i.e. input messages) do we need to take from M to get a collision,
assuming h behaves like a perfectly random function.

2. How many random samples we need to take from M to obtain a three-way collision (i.e., How
many random samples, mi∈M , do we need to take in order to observe that three different inputs
m1,m2,m3∈M map to the same value, h(m1)=h(m2)=h(m3)?)

Solution:

1. Given a pair of different messages m1,m2, the probability of m1 being mapped to a given
h(m1)∈D is 1

|D| . Consequentially, m1 has 1
|D| probability of being mapped to the same

value of h(x2), thus the probability of a collision h(x1)=h(x2) is 1
|D| . Since there is no

constraint on picking a specific m1 or m2, consider that, drawing n input messages from
M , the number of possible message pairs formed is

(
n
2

)
≈n2. Recall that, for any finite or

countable set of events, the probability that at least one of the events happens is no greater
than the sum of the probabilities of the individual events (a.k.a. Union Bound). Thus, the
probability to obtain a collision in one of the message pairs which can be built drawing n
random hash inputs is: n2

|D| .
Considering that the previous quantity is a probability, and thus must be lesser than 1:
n2

|D| < 1 the upper bound for the collision probability is n < |D| 12 .

2. Similarly to the previous case, the probability that h(m1)=h(m2) is 1
|D| . Assuming that

this event happened, h(m3) has only 1
|D| probability of being mapped to the same value as

both m1 and m2, so the probability of all three digests being equal is Prob(h(x1)=h(x2)∧
h(x2)=h(x3))= 1

|D|2 .
Drawing n random samples from the domain M , the number of possible triples is

(
n
3

)
≈n3.

Applying the union bound approximation, the probability to obtain a 3-way collision among
triplets of messages picked from a set of n samples is given by the summation n3-times of
1
|D|2 . Therefore, an upper bound for the probability to get a 3-way collision is: n3

|D|2 .

Considering that, in the same way as the previous derivation, n3

|D|2 must be less than 1, the

sought upper bound is n < |D| 23 .

4.2 Length extension attacks

4.2.1 The Gambling House

A gambling house provides a perfectly fair game to his clients following this game routine:

1. The client picks the odds of winning as a power of two o = 2i, 1 < 140, and sends the value o,
together with an arbitrarily long nonce, and the amount of money m to the gambling house

2. The gambling house computes r = SHA− 1(secret|nonce) mod 2i, and reveals r to the gambler

3. If r = 0, the gambling house pays the client m ∗ 2i

The gambling house actively checks if the client employs the same nonce multiple times, changing the
value of secret and forfeiting the current game when this happens.

• Is this system free from cheating? If not, describe how it is possible to cheat, and the computational
effort required to do so.

43



A. Barenghi - G. Pelosi

• Would employing SHA-2-256 instead of SHA-1 compensate for the system weakness?

Solution:

• Unfortunately, the gambling house can be cheated around exploiting the properties of the
Merkle-Damgaard structure of MD5. In particular, we know that the Merkle-Damgaard
structure is vulnerable to length-extension attacks, allowing an attacker to obtain H(A|B),
given H(A) and B. This fact can be exploited to drive the generation of r at the client’s will,
provided that it is possible to obtain the full value of r. Since the gambling house reveals at
most the 140 less significant bits of it, the attacker needs to reconstruct the remaining 20
as follows:

1. Gamble with 2140 and a nonce n1, obtaining a 140 bit long truncated response r1
2. Gamble with 2140 and craft a nonce as n1|n2, where n2 is a second random nonce,

obtaning the truncated response r2
3. For all the possible values 0 ≤ a ≤ 220 − 1 the attacker checks when extending the

SHA-1 state a|r1 yields n2 as the 140 least significant bits of the hash value for a given
ā.

4. The value ā|r1 is the actual result of r = SHA(secret|n1), under the assumption
that comparing only the last 140 bits of the result of the length extended SHA-1 is
enough to determine a match of the whole state (in practice, this works with a very
high probability)

Once the value of r is known to the attacker, he proceeds to cheat the gambling house, with
a computational effort of 2i as follows:

– Pick a value for the odds of winning 2i+1

– Pick a random value n3 Craft a nonce as n1|n3, and compute the result of the SHA-1
length extension of r with n3, until the last i bits are zero: this will take, on average 2i

trials
– Send to the gambling house the triple (2i+1, n1|n3, lots_of_money)

Note that, for this attack to be carried out in practice, the attacker should take care of
considering the mandatory SHA-1 padding, which is added at the end of n1. The pad,
constituted by a single one, a run of zeroes and the length in bits of n1 expressed as a 64
bit unsigned integer is thus considered by the attacker as a prefix of n2 and n3. Note that
the fact that the length of the secret is not known does not represent an issue in the forgery
process, as sensible message lengths can be bruteforced easily.

• Although SHA-2-256 is built on a Merkle-Damgaard structure, and thus is still vulnerable to
length extension attacks, the attacker will have significantly more difficulty in reconstructing
the actual value of the hash from the truncated value provided by the gambling house. In
particular, as only 140 out of 256 output bits are known to him, the attacker will need to
perform a bruteforce effort in the range of 2256−140 = 2116 which is not feasible.
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Chapter 5

Multiplicative Groups and Finite Fields

5.1 Multiplicative groups

5.1.1 Characterize (Z∗
27, ·)

Consider the multiplicative group of Z27, with support Z∗27:

a) Compute its cardinality and the number of its generators

b) Compute a generator for each one of its subgroups

Solution:

a) The elements of Z∗27 must be invertible mod 27, and thus coprime with 27. We have thus that
|Z∗27| = ϕ(27) = 33 − 32 = 18. Z∗27 will have ϕ(18) = (21 − 20)(32 − 31) = 6 generators.

b) Given that |Z∗27| = 18 we have that there are non trivial subgroups of Z∗27 with cardinality
2, 3, 6, 9. After checking that indeed 2 is a generator of Z∗27, i.e. 2i 6=27 1 for i ∈ {2, 3, 6, 9},
we obtain the generator of the subgroups according to their cardinality s as 2

18
s mod 27.

Thus we obtain

• s = 2→ 29 mod 27 = 26 mod 27 = −1 mod 27

• s = 3→ 26 mod 27 = 10 mod 27

• s = 6→ 23 mod 27 = 8 mod 27

• s = 9→ 22 mod 27 = 4 mod 27

5.2 Prime Fields

5.2.1 Quick Computations over F ∗
p

Compute, exploiting the properties of the underlying multiplicative group, the following values:

• 349
4

mod 16

• 12677 mod 31

• 649
4

mod 16

Solution:
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• First of all, note that gcd(3, 16) = 1, thus 3 ∈ Z∗16.
The size of Z∗16 is φ(15) = (3− 1)(5− 1) = 8, thus 38 = 3 mod 16.
Consequentially, 349

4

mod 16 = 349
4 mod 8 mod 16 = 31

4 mod 8 mod 16 = 31 mod 16 = 3

• First of all, 126 mod 31 = 2, thus 12677 mod 31 = 277 mod 31. Then, checking that
gcd(2, 31) = 1 we have that 2 ∈ Z∗31 (actually, since 31 is prime, we could have skipped this
check). Note that |Z∗31| = 30, thus 277 mod 31 = 277 mod 30 mod 31 = 217 mod 31. Note
that 25 mod 31 = 1, thus 217 mod 31 = 215 ∗ 22 mod 31 = 4

• Note that gcd(6, 16) = 2 6= 1, thus 6 /∈ Z∗16. In fact, note that 16k = 6 · 16
gcd(6,16) = 6 · 8 =

48 = 3·16 = 0 mod 16. Consequentially, (6)4 mod 16 = (2·3)4 mod 16 = 24 ·34 mod 16 =

0 · 34 mod 16, thus 649
4

mod 16 = 0.

5.3 Polynomial Rings

5.3.1 Irreducible and Primitive polynomials

Consider the following polynomial f(x)=x4 + x+ 1∈F2[x].

• Verify it is both irreducible and primitive

• Given β(x)=x2 + x+ 1∈F24
∼= F2[x]/〈f(x)〉, compute β(x)

64−1

.

Solution:

• The first step is to apply the irreducibility test: in this case, it amounts to verifying that
gcd(x4 + x + 1, x2

1 − x), and gcd(x4 + x + 1, x2
2 − x) are constant (i.e., zero degree

polynomials).
Being f(x) irreducible, it can be used to build a representation of the elements in F24 .
If the roots of f(x) are generators of the multiplicative group F∗24 , then it is also a primitive
polynomial for F24 .
In order to verify that a root of f(x), say α∈F24 \ F2, f(α)=0 ⇔ α4=α+ 1, is a primitive
elemen it should be checked that αh 6= 1, for all h dividing |F∗24 |. Recalling that |F∗24 | = 15
α3 and checking that α3 6= 1, α5 = α4α = (α+ 1)α 6= 1, we obtain that f(x)=x4 + x+ 1
is in fact primitive (and thus irreducible).

• β(x)
64−1

≡ β(x)4
−1 ≡ β(x)4 ≡ (β(x)2)2 ≡ (x4 + x2 + 1)2 ≡ (x2 + x)2 ≡ (x4 + x2) ≡

x2 + x+ 1 ≡ β(x).

5.3.2 Irreducible and Primitive polynomials - 2

Consider the polynomial P (x)=x6 + x5 + x4 + x+ 1∈F2[x]

(a) Show that P (x) is a primitive polynomial for the field F26

(b) Compute the values of all the roots of P (x)

(c) Compute the value of (α3 + α)1260128

Solution:

(a) P (x) is primitive if its roots are generators of the multiplicative group
(
F∗26 , ·

)
.

Remember that F26
∼= F2[x]/〈f(x)〉 ∼= F2(α), where α/∈F2, P (α)=0 and the elements of

the field can be represented as F2(α)={θ5α5 + . . .+ θ1α+ θ0}, θi∈{0, 1}, 0≤i≤5.
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Therefore, P (x) is primitive over F26 , n=|F∗26 |=63=32·7,
iif assuming P (α)=0 ⇔ α6 ≡α5+α4+α+1, the following relations hold

α3
?

6≡ 1

α7
?

6≡ 1

α9
?

6≡ 1

α21
?

6≡ 1

⇒


α3 6≡ 1
α7 ≡ α · α6 ≡ α · (α5 + α4 + α+ 1) ≡ α4 + α2 + 1 6≡ 1
α9 ≡ α7 · α2 ≡ . . . ≡ α5 + α2 + α+ 1 6≡ 1
α21 ≡ α3 · (α9)2 ≡ . . . ≡ α4 + α3 + 1 6≡ 1

(b) Since α∈F26 \F2 is a root of P (x)∈F2[x], the other five roots are conjugate elements of α,
i.e.:

α21 ≡ α2

α22 ≡ α4

α23 ≡ α8 ≡ α5 + α3 + α

α24 ≡ (α8)2 ≡ α10 + α6 + α2 ≡ . . . ≡ α3 + α

α25 ≡ (α16)2 ≡ (α3 + α)2 ≡ α6 + α2 ≡ α5 + α4 + α2 + α+ 1

(c) (α3 + α)1260128 ≡ (α3 + α)1260128 mod 63 ≡ (α3 + α)2 ≡ α6 + α2 ⇔
(α3 + α)1260128 ≡ α5 + α4 + α2 + α+ 1

5.3.3 Irreducible and Primitive polynomials - 3

Consider the finite field F34 :

Find the number of its irreducible and primitive polynomials.

Determine if π(x) = x4 + x+ 2 ∈ F3[x] is a primitive polynnomial and show all its roots.

Solution:

Given the finite field at hand, we know that X34 − x is the product of all the irreducible
polynomials over F3 with degree d, and d|4.

5.3.4 Zech Logarithm

Considering a Finite Field Fq, q=pm, with p prime, m≥1, and a primitive element α∈F∗q , ord(α)=q−1,
the Zech logarithm relative to the base α is defined as:

Zα(i)
def
= logα(1 + αi)⇔ αZα(i)

def
= 1 + αi

with the following conventions:

∃ e∈F∗q s.t. αe=−1⇒ Zα(e)
def
= logα 0=−∞

Zα(−∞)
def
= 0

α−∞
def
= 0

Note that: Zα(·) ∈ {0, 1, . . . , q − 2}
For sufficiently small finite fields, a table of Zech logarithms allows an especially efficient implementation
of all finite field arithmetic in terms of a small number of integer addition/subtractions and table look-ups,
through repeatedly employing the following chain of equalities:

αn + αm = αn · (1 + αm−n) = αn · αZ(m−n) = αn+Z(m−n)
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• Compute the Zech logarithm table for the field F23
∼=F2(α), f(α)=0, where f(x)=x3+x2+1∈F2[x]

is the primitive polynomial, ord(α)=7.

i Zα(i)=logα(1 + αi)
0 −∞
1 ...
... ...
6 ...

• Compute x = logα(α4 + α+ 1) using the corresponding Zech table

Solution:

• considering i = 0, 1, . . . , 6 we have
α0 = 1, α1 = α, α2 = α2

α3 = α2 + 1, α4 = α2 + α+ 1, α5 = α+ 1, α6 = α2 + α

i Zα(i)=logα(1 + αi)
0 −∞
1 5
2 3
3 2
4 6
5 1
6 4

• α4 + α+ 1 = α(1 + α3) + 1 = α1+Z(3) + 1 = α3 + 1 = αZ(3) = α2

x = logα(α4 + α+ 1) = logα(α2) = 2.
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Chapter 6

Public-Key Cryptosystems

6.1 RSA Cryptosystem

6.1.1 Computing RSA

Consider the RSA modulus n = p · q = 713 = 23 · 31

(a) Apply the Miller-Rabin primality test to the factor p = 23 employing as bases a = 3, b = 7.

(b) Given the public exponent e=7 ∈ Z∗ϕ(n), show the value of the RSA private key,
kpriv=(p, q, ϕ(n), d) and specify every step of the computation.

(c) Apply a Right-to-Left Square & Multiply strategy to compute the ciphertext c1 = m13 mod n, with
m = 101 mod n employing a radix-2 encoding of the exponent, and apply a Left-to-Right Square
& Multiply strategy to re-compute the same value employing a radix-4 encoding of the exponent.

Solution:

(a) Decompose p − 1 as d2s, d = 11, s = 1. Check if ad mod p 6= ±1: 311 ≡23 1, 711 ≡23

22 ≡23 −1. 23 is prime with probability 4−2.

(b) ϕ(n) = 22·30 = 22 ·3·5·11 = 660, ϕ(ϕ(n)) = ϕ(660) = (22−2)(3−1)(5−1)(11−1) = 160
d = eϕ(ϕ(n))−1 mod ϕ(n) = 7159 mod 660 = 283.

(c) Right-to-Left S&M:
c1 ≡n m13dec ≡713 101〈1101〉2 ≡713 (1012

3

)1 · (1012
2

)1 · (1012
1

)0 · (1012
0

)1 ≡713 . . .
≡713 357.
To apply the Left-to-Right S&M with a 4-radix expansion of the exponent it is convenient
to be able to compute the 4-th power of an integer modulo 713, efficiently;
in addition, we need to pre-compute: m ≡713 101, m2 ≡713 219, m3 ≡713 16. Thus,
c1 ≡n m〈13〉10 ≡713 101〈31〉4 ≡713 (1013)4 · 101 ≡713 653 · 101 ≡713 357.

6.1.2 Computing RSA - 2

Let n = p · q = 437 = 19 · 23 be the modulus of an RSA cryptosystem.

• Choose which one of the possible exponents among e = 3, e = 11, e = 17 can be actually employed
as RSA public exponent in conjunction with the public modulus n = 437.

• Compute the value of the corresponding RSA private key, kpriv = (p, q, ϕ(n), d), and specify every
passage of the computation.
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• Sign the message m=101 (without employing any padding scheme) through applying the Chinese
Remainder Theorem to speedup the computation of s = md mod n. Describe each passage of the
procedure.

Solution:

• We recall that the public exponent must belong to Z∗ϕ(n) ⇔ 0 < e < n, gcd(e, ϕ(n)) = 1.
Thus considering that ϕ(n) = (p− 1)(q− 1) = 18 · 22 = 22 · 32 · 11 = 396, the only possible
choice is e = 17.

• d = e−1 mod ϕ(n)⇒d ≡ϕ(n) eϕ(ϕ(n))−1 ≡396 17119 ≡396 17〈1110111〉2 ≡ ((((((17)2 · 17)2 ·
17)2)2 · 17)2 · 17)2 · 17 ≡396 233. The private key of this RSA cryptosystem instance is thus
kpriv = (p, q, ϕ(n), d) = (19, 23, 396, 233)

• The signature computation process goes as follows:

m = cd mod ϕ(n) mod n⇔
{
m = mp mod p
m = mq mod q

where:

mp = cd mod ϕ(p) mod p ≡19 101233 mod 18 ≡19 10117 ≡19 16 and
mq = cd mod ϕ(q) mod q ≡23 101233 mod 22 ≡23 10113 ≡23 12

m ≡n
(
Mp ·M

′

p ·mp +Mq ·M
′

q ·mq

)
mod n

Mp = q = 23, M
′

p = q−1 mod p = 23−1 mod 19 ≡19 4−1 ≡19 5

Mq = p = 19, M
′

q = p−1 mod q = 19−1 mod 23 ≡23 −4−1 ≡23 −6 ≡23 17

⇒ m ≡437 (23 · 5 · 16 + 19 · 17 · 12) ≡437 1840 + 3876 ≡437 5716 ≡437 35

6.1.3 Mental Poker

Consider an RSA cryptosystem and a user private key Kpriv−A=(p, q, ϕ(n), d)=(7, 19, 108, 13).

Mental Poker[SRA76] is a protocol by which two parties each of whom distrusts the other can deal each
other cards from a deck without either being able to cheat.
The protocol for A to deal B a card goes like this:

1. A and B agree on a set X={x1, . . . , x52}; x∈Zn, of random numbers where n=p · q, p and q prime
and known to both A and B. These numbers represent the deck of cards: xi represents the i-th
card in the deck.

2. A randomly picks s such that gcd(s;ϕ(n))=1, and t such that s · t=1 mod ϕ(n) secretly. B does
the same for e and f . (i.e., e · f=1 mod ϕ(n))

3. A calculates (xi)
s mod n for i=1, · · · , 52, shuffles the numbers, and sends them to B.

4. B calculates ((xi)
s)e mod n for i=1, · · · , 52, shuffles the numbers, and sends them to A.

5. A calculates (((xi)
s)e)t mod n for i=1, · · · , 52, A then chooses a card randomly (i.e., picks (xj)

e

where j∈[1, · · · , 52]) and sends it to B.

6. B then takes ((xj)
e)f mod n. This is the card B has been dealt.

[SRA76] A. Shamir, R. L. Rivest, and L. M. Adleman. Mental poker. In D. Klarner, editor, The
Mathematical Gardner, pages 3743. Wadsworth, Belmont, California, 1981.

• Find the corresponding public key Kpub−A=(n, eA). Show each step of the computation.
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• Emulate the digital signature process on the message M={10101}2=21 mod n, showing each pas-
sage of the calculus.

• Consider the scenario shown in the following and compute the minimal number of modular multi-
plications to compute one round of the “Mental Poker” protocol (Steps from (3) to (6)).

Assume ϕ(n)≈n.

Solution:

• e, d∈Z∗ϕ(n)
e=d−1 mod ϕ(n)=dϕ(ϕ(n))−1 mod ϕ(n)=d35 mod ϕ(n)=
=d{100011}2 mod ϕ(n)=((((d2)2)2)2 · d)2 · d mod ϕ(n)
=((((132)2)2)2 · 13)2 · 13 mod 108≡108(((612)2)2 · 13)2 · 13≡108((492)2 · 13)2 · 13≡108

≡108(252 · 13)2 · 13≡108(85 · 13)2 · 13≡108(25)2 · 13≡10885 · 13≡10825.

Kpub−A=(n, e)=(133, 25)

(b) M=21 mod 133,
S=SigKpriv(M)=Md mod n=2113 mod 133≡13321{1101}2≡133(((21)2 · 21)2)2 · 21 ≡133

≡133((42 · 21)2)2 · 21≡133((84)2)2 · 21≡13372 · 21≡13398.

〈M,S〉=〈{10101}2, {1100010}2〉
(c) Applying a Square & Multiply strategy, the cost of a single modular exponentiation can be

stated as: dlog2ne−1 modular squarings plus 0.5·dlog2ne−1 modular multiplications. (av-
erage case – the exponent is randomly chosen in {1, . . . , ϕ(n) ≈ n}).
If the cost of a modular squaring is assumed to be equal to the cost of a modular multiplica-
tion then the total cost of a single modular exponentiation can be expressed as 1.5·dlog2ne−1
modular mul.s.

Cost (3)–(6):
(52 + 52 + 52)·1.5·dlog2ne−1 + 1.5·dlog2ne−1=157·(1.5·dlog2ne−1)=235.5·dlog2ne−157
modular mul.s.

6.1.4 Factoring n with collateral information
In the following, we consider an RSA-cryptosystem with public key kpub = 〈n, e〉,
where n=9179 and e=4321. Furthermore, suppose you find a notice saying ϕ(n2)=82390704.

• Show1 for any two positive integers a, b that ϕ(ab)=ϕ(a)ϕ(b) holds if gcd(a, b)=1.

• Show without factoring n that ϕ(n)=8976.

• Determine the private key d without factoring n. Show each step of the computation.

• Factor n using ϕ(n).

Solution:

• Recalling the definition: ϕ(ab) = |X|, with X = {x|1 ≤ x < ab, gcd(x, ab) = 1}|.
If gcd(a, b) = 1, then each prime divisor of ab is a prime divisor of a or (exclusively)
it is a prime divisor of b. Therefore x∈{y|1 ≤ y < a, gcd(x, a) = 1}, or (exclusively)
x∈{y|1 ≤ y < b, gcd(y, b) = 1}, thus

ϕ(ab) = ϕ(a) · ϕ(b)

1Remark: if gcd(a, b)=1 then gcd(ab, c)=gcd(a, c)gcd(b, c)
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Alternatively:
If a = 1 or b = 1, then the claim holds.
Suppose now that a > 1 and b > 1, and denote:
A = {x|1 ≤ x < a, gcd(x, a) = 1}
B = {y|1 ≤ y < b, gcd(y, b) = 1}
C = {w|1 ≤ w < a b, gcd(w, a b) = 1}.
Then we have that |A| = ϕ(a), |B| = ϕ(b), and |C| = ϕ(a b).
The claim will follow through showing that C has equally many elements as the set A×B =
{(x, y)|x ∈ A, y ∈ B}. Since gcd(a, b) = 1, we can use the CRT noting that the map π(·)
is bijective:

π : Zab ↔ Za × Zb, π(v) = (v mod a, v mod b)

Observe that A ⊂ Za, B ⊂ Zb , and C ⊂ Zab.
It holds that w ∈ C if and only if π(v) ∈ A×B, as:

gcd(w, a b) = 1⇔ gcd(x, a) = 1 and gcd(y, b) = 1⇔

⇔ gcd(x mod a, b) = 1 and gcd(y mod b, b) = 1

.

Alternatively, note that each prime divisor of ab is either a prime divisor of a or of b, and
those primes which divide both a and b also divide gcd(a, b). Hence, starting from

ϕ(ab) = (ab)
∏
p|ab

(1− 1

p
)

we can write

ϕ(ab)

(ab)
=
∏
p|ab

(1− 1

p
) =

∏
p|a(1− 1

p ) ·
∏
p|b(1−

1
p )∏

p|gcd(m,n)(1−
1
p )

=
ϕ(a)
a ·

ϕ(b)
b

ϕ(d)
d

, where d = gcd(a, b)

This is equivalent to write

ϕ(ab) = ϕ(a)ϕ(b)
d

ϕ(d)

Therefore, if gcd(a, b) = 1, then ϕ(ab) = ϕ(a)ϕ(b).

•

n = p · q, ϕ(n2) = (p2 − p) · (q2 − q) = nϕ(n)⇒ ϕ(n) =
ϕ(n2)

n
= 8976

•
gcd(ϕ(n), e) = 1⇔ gcd(8976, 4321) = 1

EEA⇔ ϕ(n) · (−2057) + e · 4273 = 1

d = e−1 mod ϕ(n) ≡8976 4273

• Recall that n− ϕ(n) + 1 = pq − pq + p+ q − 1 + 1 = p+ q and solve, by substitution the
simultaneous equation set given by n− ϕ(n) + 1 = p+ q = 204 and pq = 9179 for p and q
as:

Z2+(8976−9179−1)Z+9179 = 0⇒ Z2−204Z+9179 = 0⇒
{
p = 102−

√
1225 = 67

q = 102 +
√

1225 = 137
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6.2 Diffie-Hellman Cryptosystem

6.2.1 Prime Field Choice
We use the Diffie-Hellman Key exchange with public group (〈g〉, ·), where g∈Z∗p, n = |〈g〉|. Two pairs of
private and public keys are: (Kpriv,A, Kpub,A)=(a,A), with A=ga mod p, and (Kpriv,B, Kpub,B)=(b, B), with
B=gb mod p.

• Would any of the following p and g be good choices for the Diffie-Hellman algorithm (ignoring the
fact that the numbers are too small to be secure)? Motivate your answer.

1. p = 179, g = 1

2. p = 17, g = 2

3. p = 195, g = 14

• Assuming p = 71, g = 7

1. Is it possible to find two pairs a, b ∈ {2, . . . , n− 1} such that the common key Kshared = 1?
2. An attacker knows that the product A · B = g mod p. Provide two possible pairs (a, b) that

satisfy the attackers knowledge.

• What is a good choice for the parameters of a Diffie-Hellman protocol?

Solution:

• 1. Picking p = 179, g = 1 is clearly wrong, as it is trivial to verify that ga = 1 for any
value of a.

2. Picking p = 17, g = 2 calls for checking that 2 generates Z∗17. Since |Z∗17| = 16, the
values 22 mod 17, 24 mod 17, and 28 mod 17 should not be 1. This is not the case as
28 = 256 = 1 mod 17.

3. The same reasoning applies to p = 195, g = 14. Note that 195 = 3 · 5 · 13 where
|Z∗195| = ϕ(195) = 96 = 25 · 3. Since 142 ≡195 1, 14 is not a generator of Z∗195

• g is a generator for the group (Z∗p, ·) . . . gab ≡p 1⇔ gab ≡p g0 ⇔ ab ≡n 0⇔ ab ≡70 0 ⇒
(a, b) = {(2, 35), (7, 10)}
• ga+b ≡p 7⇔ ga+b ≡p g1 ⇔ a+ b ≡n 1⇔ a+ b ≡70 1 ⇒ (a, b) = {(7, 64), (2, 69)}

6.2.2 Breaking DSS-DSA
Consider a Digital Signature Standard Algorithm (DSS-DSA) on the cyclic group (G, ·) whereG=Z∗p=〈 g 〉
and p=4·13+1=53, g=2. The order of the working subgroup H is q=|H|=13.

• Find one generator of the working subgroup H = 〈h〉

• Consider a message m with digest H(m) = 11dec.
Given the Signature 〈γ, δ〉 = 〈2dec, 9dec〉, find the secret key s ∈ Z∗q .

Hint-1: γ = (hl mod p) mod q,
δ = l−1 · (H(m)− s · γ) mod q,
l ∈ Z∗q is randomly chosen

Hint-2: Find l ∈ Z∗q from the first part of the signature, γ, through employing a BSGS strategy to
extract the discrete logs. Note that l = logh γ̄ mod p, where γ̄ can be any value in the set
{γ = 2, γ + q = 15, γ + 2q = 28, γ + 3q = 41}. Try to compute the dlog through picking the
aforementioned values in the written order (from left to right), the first time you find out that
the dlog exists you will also find the correct value of l. The secret key s can be derived from
the 2nd part of the signature as: s = γ−1 · (l · δ −H(m)) mod q
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Solution:

Consider a Digital Signature Standard Algorithm (DSS-DSA) on the cyclic group (G, ·) where
G = Z∗p = 〈 g 〉 and p = 4 · 13 + 1 = 53, g = 2. The order of the working subgroup H is
q = |H| = 13.

• Find one generator of the working subgroup H = 〈h〉

h = g
p−1
q mod p ≡53 2

52
13 ≡53 16

• Consider a message m with digest H(m) = 11dec.
Given the Signature 〈γ, δ〉 = 〈2dec, 9dec〉, find the secret key s ∈ Z∗q .

q = |H| = |〈h 〉| = 13, generator h = 16 mod 53

γ̄ = hl mod p, if l = (i · d√qe+ j) mod q, with 0 ≤ i, j ≤ d√qe, then

γ̄ ·
(
h−d
√
qe)i︸ ︷︷ ︸

Giant-Steps

= hj︸︷︷︸
Baby-Steps

h−d
√
qe mod p = 16−4 mod 53 ≡53 1653−116−4 ≡53 1648 ≡53 36

(or h−d
√
qe mod p = (16−1)4 mod 53 ≡53 104 ≡53 36)

Baby Steps
j: 0 1 2 3 4

hj = 16j : 1 16 44 15 28

γ̄ ∈ {γ = 2, γ + q = 15, γ + 2q = 28, γ + 3q = 41}
Giant Steps

i: 0 1 2 3 4(
h−m)i = 36i: 1 36 24 16 46

2 · 36i 2 19 48 32 39
15 · 36i 15 – – – –
28 · 36i – – – – –
41 · 36i – – – – –

i = 0, j = 3, matching value: 15 ⇒
l = (i · d√q e+ j) mod q = (0 · 4 + 3) mod 13 ≡13 3
s = γ−1 · (H(m)− l · δ) mod q ≡13 2−1 · (11− 3 · 9) ≡13 7 · (−16) ≡13 −21 ≡13 5

6.3 Elliptic Curve Cryptosystems

6.3.1 Elliptic Curve Characterization - (I)
Consider the elliptic curve

E(F5) : Y 2 = X3 + b

• For which b does this equation describe a non-singular elliptic curve over the field F5?

• For which b both points (3, 1) and (4, 4) are on E(F5)?

Now, let b = 3:
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• Calculate all points on E(F5).

• Show that point P = (1, 2) generates the group (E(F5),+).

Solution:

• 4 · 03 + 27b2 6= 0 mod 5⇒ b = {1, 2, 3, 4}
• 6 ∃b
• (1, 2), (1, 3), (2, 1), (2, 4), (3, 0), O

• n = |E(F5)| = 6 = 2 · 3.
P = (1, 2)

[2]P 6= O

λ ≡5 3 · 4−1 ≡5 2, x[2]P=λ
2−2xP ≡5 2, y[2]P=−yP+λ(xP−x[2]P) ≡5 1

[2]P = (2, 1) 6= O.

[3]P = [2]P + P 6= O

λ ≡5 3 · 4−1 ≡5 −1, x[3]P=λ
2−x[2]P−xP ≡5 3, y[3]P=−yP+λ(xP−x[3]P) ≡5 0

[3]P = (3, 0) 6= O.

6.3.2 Elliptic Curve Characterization - (2)
Consider an elliptic curve cryptosystem defined over the elliptic curve E(Z11) with equation
y2 = x3 + 1 over Z11.

(a) What is the order of the additive group (E(Z11), +)?

(b) What is the sum of the points (2, 3) and (5, 4)?

(c) Describe the encryption and decryption functions of the Elliptic Curve ElGamal cryptosystem.

Solution:

(a) |E(Z11)|=12

x, y: 0 1 2 3 4 5 6 7 8 9 10
x3 + 1 mod 11: 1 2 9 6 10 5 8 3 7 4 0
y2 mod 11: 0 1 4 9 5 3 3 5 9 4 1

Punti sulla curva
(0, 1) (0, 10)
(2, 3) (2, 8)
(5, 4) (5, 7)
(3, 5) (3, 6)
(9, 2) (9, 9)
(10, 0) O

(b) S(xS, yS) = P(xP, yP) + Q(xQ, yQ)=(2, 3)+(5, 4)
λ ≡11 (yQ − yP)(xQ − xP)−1≡11(4−3)(5−2)−1≡114o
xS=λ

2−xP−xQ≡1116−2−5≡11 9
yS=λ(xP−xS)−yP≡114(2−9)−3≡112
S(xS, yS)=(9, 2)

(c) see lectures . . .
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6.3.3 Faulty RNG and ECDSA
Consider a computing platform having a bootloader, that before loading and transferring control to the
proper binary program m1 ∈ {0, 1}∗, at first checks the digital signature of the binary and only runs it
only if the signature is correct.

Assume that the employed digital signature primitive is the Elliptic Curve Digital Signature Algorithm
(ECDSA) on the cyclic group (G,+) where G=(E(F17),+), with E(F17): y2= x3+2x+11, n=|G|=11,
and generator P=(xP, yP)=(4, 10). The EC-DSA implementation under exam has a critical flaw as it
employs a fixed “nonce” r for the signature computation of every binary program.
In particular, the following information are known.

• m1∈{0, 1}∗, e1 = SHA-1(m) mod n ≡11 13, SignEC-DSA
kpriv (m1)=(k, z1)=(5, 4)

• m2∈{0, 1}∗, e2 = SHA-1(m2) mod n ≡11 11, SignEC-DSA
kpriv (m2)=(k, z2)=(5, 10)

Hint: the EC-DSA Signature Algorithm works as follows: kpriv ← (s), s∈Zn and kpub ← (n,P, [s]P)

1. r Random← {1, . . . , n− 1}, gcd(r, n) = 1

2. [r]P = (x1, y1), k ← x1 mod n. if k = 0 then go to step 1.

3. e← SHA-1(m)

4. z ← r−1(e+ s · k) mod n. if z = 0 then go to step 1.

5. SignEC-DSA
kpriv (m) = (k, z)

• Show how to derive the EC-DSA private key in such a way to nullify the trusted boot process.

Solution:

{
z1 · r ≡n e1 + s · k
z2 · r ≡n e2 + s · k ⇒

{
4 · r ≡11 13 + s · 5
10 · r ≡11 11 + s · 5 ⇒

{
r ≡11 7
s ≡11 3
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Chapter 7

Fast Arithmetics, Discrete Logs and
Factoring

7.1 Montgomery Multiplication

Assume to be working in the Montgomery domain: (Z̃p,+,×), p = 17

• Report the definition of the Montgomery Multiplication and the smallest admissible value for the
Montgomery Radix: R

• Compute a pair of integer values R′, p′ that satisfy the relation: gcd(R, p)=RR′−p p′=1, showing
each step of the procedure

• Compute the Montgomery multiplication C = A× B, where A = 16dec and B = 5dec, assuming a
binary encoding of the operands.

Solution:

• We recall that the definition of the Montgomery Multplication is a, b ∈ (Z̃p,+,×), MonPro(a, b) =

a× b def
= a · b ·R−1 mod p. Consequentially, the smallest admissible value for R is obtained

as: t = d log2 p e = d log2 17 e = 5, R > p, gcd(R, p) = 1⇒ R = 2t = 32

• Exploiting the relation gcd(R,n)=RR′−nn′=1 we obtain that gcd(32, 17)=32 (8)−17 (−15)=1.
Consequentially, the desired values are: R′ = R−1 mod p⇒ R′=32−1 mod 17=≡17 1315 ≡17

8, and p′ = p−1 mod R⇒ p′=17−1 mod 32=1730 mod 32≡32 17≡32 −15.

• p = 17dec = 〈10001〉2, p′0 = (p′ mod 2) = 1

B = 〈00101〉2
A = 〈10000〉2
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00000 +
00000 A0B = 〈00000〉2
00000 +
00000 t p = (p′0x0) p = 〈00000〉2
00000 perform a right-shift of 1 bit
00000

00000 +
00000 A1B = 〈00000〉2
00000 +
00000 t p = (p′0x0) p = 〈00000〉2
00000 perform a right-shift of 1 bit
00000

00000 +
00000 A2B = 〈00000〉2
00000 +
00000 t p = (p′0x0) p = 〈00000〉2
00000 perform a right-shift of 1 bit
00000

00000 +
00000 A3B = 〈00000〉2
00000 +
00000 t p = (p′0x0) p = 〈00000〉2
00000 perform a right-shift of 1 bit
00000

00000 +
00101 A4B = 〈00101〉2
00101 +
10001 t p = (p′0x0) p = 〈10001〉2
10110 perform a right-shift of 1 bit
01011

C = 〈01011〉2 = 11dec < p⇒ C =MonPro(16, 5) = 11 mod 17

Validation:

C=MonPro(16, 5)
def
= 16 · 5 ·R−1 mod p≡1780 · 15−1≡17 12 · 8 ≡17 11dec

7.1.1 Montgomery Multiplication in radix-4

Assume to work into the Montgomery domain: (ZN ,+,×), N = 21.
Compute the Montgomery multiplication C=A×B modN , whereA=16decimal = 1004 andB=18decimal =
1024 are Radix-4 encoded values in the Montgomery domain. Show every step of the procedure, per-
forming all the computations in radix-4.
Solution:

Radix b = 4, dlog4Ne = 3, R = b3 = 64,
gcd(R,N) = RR′ −NN ′ = 1⇔ gcd(64, 21) = 64(1)− 21(3) = 1,
R′

def
= R−1 mod N = 1 mod 21 = 1 = 14,

N ′
def
= N−1 mod R = 3 mod 64 = 3 = 34; N ′0 = 3

B = 〈B2B1B0〉b = 〈102〉b
A = 〈A2A1A0〉b = 〈100〉b
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x = 〈000〉b +
000 A0B = 0 · 〈102〉b
000 +
000 tN = (N ′

0x0 mod b)N = 0

000 perform a right-shift of 1 digit

000 +
000 A1B = 0 · 〈102〉b
000 +
000 tN = (N ′

0x0 mod b)N = 0

000 perform a right-shift of 1 digit

000 +
102 A2B = 1 · 〈102〉b
102 +
222 tN = (N ′

0x0 mod b)N = 42decimal = 222b
330 perform a right-shift of 1 digit

033b

C = 〈033〉4 = 15dec < N ⇒ C = 15dec × 18dec = 15dec ∈ (ZN ,+,×)

Validation: C=16dec × 18dec
def
= 16 · 18 ·R−1 mod N=16 · 18 · 1 mod 21=15≡2115

7.2 Factoring

7.2.1 Pollard’s P − 1

Consider the RSA modulus n=p·q=899 Apply the Pollard’s P−1 factorization method to compute the
two factors p and q (assuming p<q). Consider the factor p being B-power smooth, with B=6, while the
factor q is not.

Solution:

a = 2B! mod n = 22·3·4·5·6 mod 899 ≡899 (224)5·6 ≡899 785·6 ≡899 8076 ≡899 342

gcd(a− 1,n)=gcd(341, 899)= gcd(217, 341)=gcd(124, 217)= gcd(93, 124)=gcd(31, 93)=31

n/31=29

p = 29, q = 31

7.2.2 Fermat’s Method
Apply the Fermat’s method to factor the following RSA public modulus: n = 437. Show either the
pseudo-code of the employed algorithm or each passage of the procedure.
Hint: Note that a simple test to detect if a number in decimal representation is a perfect square
can be done remembering that the last two decimal digits of a perfect square are: within the set
{00, e1, e4, 25, o6, e9}, where ’e’ stands for an even digit and ’o’ for an odd digit.

Solution:

n = 437 is an odd integer, therefore there exist two numbers x, y s.t. n = x2 − y2 ⇒ if
gcd(x− y, n) 6= 1 then you have a non-trivial factor of n

x←
⌈√

n
⌉
=
⌈√

437
⌉
, x=21

y ← x2 − n, y = 4

y is a perfect square, therefore gcd(x− y, n)=gcd(23− 4, 437)=gcd(19, 437) = 19

n = p · q = 437 = 19 · 23
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7.2.3 Pollard Rho
Apply the Pollard’s ρ method to factor the following RSA public modulus: n = p · q = 629. Assume
f(x) = x2 + 1 mod n as “random-walking” function. Show every passage of the computation.

Solution:

Picking randomly as a starting point for the Pollard’s Rho Starting point x0 = 2

i x = xi y = x2i λ = gcd(|x− y|,n)
0 2 2 1
1 5 26 1
2 26 418 1
3 48 529 37

q = 37, p = n/q = 17

7.3 Discrete Logarithms

7.3.1 Pohlig-Hellmann method - ex1 -
Consider the following relation: 11 ≡ 2x mod 13. Compute the discrete logarithm x ≡ϕ(13) logD

2 11
applying the Pohlig-Hellman method.

Solution:

We are considering the algebra of the group (Z∗13, ·),
with |Z13|=ϕ(13)=12=22·3 elements.

x ≡ϕ(13) logD
2 11 ⇔

{
x ≡ x1 mod 22

x ≡ x2 mod 3
⇒

x ≡12 x1 · 3 · (3−1 mod 4) + x2 · 4 · (4−1 mod 3)⇒ x ≡12 9x1 + 4x2

The Pohlig-Hellman algorithm compute (x1 mod p21), with p1=2, as follows:
let the 2-radix expansion of x1 mod 22 be x1 = l0 + l12 and denote as: g=2 the base of the
logarithm, β=11, n=12 the order of the group
η = g

n
p1 ≡13 26 ≡13 12

γ0 = 1, δ0 ≡ (βγ−10 )
n
p1 ≡13 116 ≡13 12.

Knowing that δ0 = (gxγ−10 )
n
p1 ≡ gx1

n
p1 ⇒ δ0 ≡ (g

n
p1 )l0 , we have

δ0 ≡13 η
l0 ⇔ 12 ≡13 12l0 , therefore: l0 = 1.

γ1 = γ0 · gl0p
0
1 ≡13 2, δ1 ≡ (βγ−11 )

n

p21 ≡13 (11 · 2−1)3 ≡13 (11 · 7)3 ≡13 12.

Knowing that δ1 = (gxγ−11 )
n

p21 ≡ (gx1−l0)
n

p21 ⇒ δ1 ≡ (g
n
p1 )l1 , we have

12 ≡13 η
l1 ⇔ 12 ≡13 12l1 , therefore: l1 = 1.

x1 = 1 + 1 · 2 = 3.

The Pohlig-Hellman algorithm compute (x2 mod p12), with p2=3, as follows:
let the 3-radix expansion of x2 mod 3 be x2 = l0 and denote as: g=2 the base of the logarithm,
β=11, n=12 the order of the group
η = g

n
p2 ≡13 24 ≡13 3

γ0 = 1, δ0 ≡ (βγ−10 )
n
p2 ≡13 114 ≡13 3.

from δ0 ≡ (g
n
p2 )l0 , we have

δ0 ≡13 η
l0 ⇔ 3 ≡13 3l0 , therefore: l0 = 1.

x2 = 1.
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x ≡12 9x1 + 4x2 ≡12 27 + 4 ≡12 7.

Validation: 2x
?≡13 11, taking x=7, it is true that 27 ≡13 11.

7.3.2 Pohlig-Hellmann method - ex2 -
Consider the following cyclic group: G=(Z∗54, ·)=〈29〉, with order n=ϕ(54)=18=2 · 32.
Compute the discrete logarithms:

• x ≡n logD
g α, with g=29, β=11

• y ≡n logD
g β, with g=29, β=12

• z ≡n logD
h ρ, with h=19, ρ=13

Solution:

• Concerning the computation of
x ≡n logD

g α, with g=29, β=11 we note that 〈g〉=G and α∈G as gcd(54, α)=1.
Thus, the logarithm x exists.

x ≡18 logD
29 11 ⇔

{
x ≡2 x1
x ≡32 x2

⇒

x ≡18 x1 · 9 · (9−1 mod 2) + x2 · 2 · (2−1 mod 9)⇒ x ≡18 9 · x1 + 10 · x2
The Pohlig-Hellman algorithm compute (x1 mod 2) as follows:
let the 2-radix expansion of x1 be x1 = l0 and denote as: g=29 the base of the logarithm,
α=11, n=18 the order of the group
η = g

n
2 ≡54 299 ≡54 −1

γ0 = 1, δ0 ≡ (αγ−10 )
n
2 ≡54 119 ≡54 −1.

l0 ≡2 logη δ0 ≡2 log−1(−1) ≡2 1, Thus x1 = 1

The Pohlig-Hellman algorithm compute (x2 mod 32) as follows:
let the 3-radix expansion of x2 be x2 = l0 + l1 · 3 and denote as: g=29 the base of the
logarithm, α=11, n=18 the order of the group
η = g

n
3 ≡54 296 ≡54 37

γ0 = 1, δ0 ≡ (αγ−10 )
n
3 ≡54 116 ≡54 37.

l0 ≡3 logηδ0 ≡3 log37(37) ≡3 1.
γ1 = gl0 = 29, δ1 ≡ (αγ−11 )

n
32 ≡54 (29−1 · 11)2 ≡54 (41 · 11)2 ≡54 37.

l1 ≡3 logη δ1 ≡3 log37(37) ≡3 1, Thus, x2 = 1 + 1 · 3 = 4.

x ≡18 9 · x1 + 10 · x2 ≡18 9 · 1 + 10 · 4 ≡18 49 ≡18 13.
Validation: gx

?≡18 α, taking x=13, it is true that 2913 ≡18 11

• Concerning the computation of
y ≡n logD

g β, with g=29, β=12 we note that 〈g〉=G, but β 6∈G as gcd(54, β)6=1.
Thus, the logarithm y does not exist.

• Concerning the computation of
z ≡n logD

h ρ, with h=19, ρ=13 we note that 〈h〉 is a generator of the subgroup H = 〈h〉 =
{1, 19, 192 ≡54 37} which has order equal to 3.
Therefore, even if the argument of the logarithm ρ=13∈G as gcd(54, ρ)=1, ρ does not
belong to the group generated by h.
Thus, the logarithm z does not exist.
It would have been more meaningful to ask the value of w ≡3 logD

h ρ.
indeed in this case (ρ mod 3) ≡ 1 and w ≡3 0
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Chapter 8

Protocols

8.1 TLS

8.1.1 Ciphersuite choices

Consider a TLS ciphersuite as a tuple (Akex,Aauth,Asym,Ahash)

(a) Which choice between (Diffie-Hellman-2048, RSA-1024, AES-128-CBC, SHA-2-256) and (Diffie-
Hellman-Ephemeral-512, RSA-2048, AES-128-CBC, SHA-2-256) is the one providing the highest
security margin?

(b) During the TLS key exchange, is it possible for an active attacker to alter the value of the session
nonce, setting it to an arbitrary value decided by him?
Does this action get detected before the end of the TLS handshake?

(c) Is there any difference between picking (Diffie-Hellman-Ephemeral-2048, RSA-2048, None, SHA-2-
256) and (Diffie-Hellman-2048, RSA-2048, None, SHA-2-256) as a TLS ciphersuite?

Solution:

(a) Despite providing perfect forward secrecy, the second ciphersuite is weaker than the first one,
as it is possible to break DHE-512 with a relatively small computational effort, thus deriving
the session key. The first choice, despite employing a suboptimal choice for key lenghts (the
RSA keylength voids the effort of the 2048 bit DH key)

(b) It is possible for an active attacker to tamper precisely with the value of the session nonce,
however, as the final message in the TLS handshake includes the hash of all the handshake
messages, such tampering will be detected on the server side as the hash computed locally
will not match with the one computed by the client.

(c) No. The temporary session key which is needed to provide confidentiality on the transported
data is not used, as there is no symmetric bulk encryption. (Both choices are valid ones in
TLS, although, obviously, not among the ideal ones).

Remember: In the TLS jargon, Diffie-Hellman-Ephemeral (DHE) differs from the static Diffie-
Hellman (DH) in the way that static Diffie-Hellman key exchanges always use the same Diffie-
Hellman (half)keys.

When a key exchange uses Ephemeral Diffie-Hellman a temporary DH key is generated for every
connection and thus the same shared key is never used twice. This enable Perfect Forwards
Secrecy, which means that if the private key of the server gets leaked, past communication is still
secure.
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8.1.2 SSLv3 IV Flaw

While reviewing an implementation of AES-128-CBC, you discover that it simply uses the last ciphertext
block from the previously encrypted message as the IV value C0 for encrypting the next message. The
implementation’s authors argue that as long as the IV of the very first message was chosen uniformly
at random, all resulting subsequent ciphertext blocks will also be distributed uniformly at random, thus
providing a secure solution1.
Discuss the robustness of this CBC implementation with respect to a Chosen Plaintext Attack.
Solution:

The described implementation cannot be recommended as a secure one because it enables an
adversary (who record every data transmission) with the ability to verify guesses on the plaintext
blocks of the encrypted communication.

Given a plaintext split up in series of a blocks P1, P2, . . . PL, the CBC mode of operation applies
the symmetric key cipher of choice (say Ek(...)) to compute the ciphertext blocks in the following
way: C0 = IV, Ci = Ek(Pi ⊕ Ci−1), with 1 ≤ i ≤ L.
The usual practice of applying a CBC mode of operation is to choose a new, unpredictable
random IV for every message that is encrypted.

The implementation mentioned above chooses all but the initial IV by setting it equal to the final
ciphertext block of the preceding encrypted message. This enable a passive adversary to mount
a chosen-plaintext attack (CPA) to verify his guess as to whether a particular plaintext block has
a particular value.

Say an adversary who has observed the ciphertext C0, . . . , Cj−1, Cj , . . . CL wants to determine
whether plaintext block Pj , with 1 ≤ j < L, is equal to some string P ∗.

Note that the adversary knows the Initialization Vector that will be used when encrypting the
next message, that is CL.

The adversary causes the sender to encrypt a message M whose initial block P ′1 is equal to
P ′1=Cj−1 ⊕ CL ⊕ P ∗.
The first ciphertext block C ′1 will be computed as: C ′1=Ek(P ′1 ⊕ CL) = Ek(Cj−1 ⊕ P ∗).
However, the adversary also know that Cj = Ek(Pj ⊕ Cj−1).
This implies that C ′1 = Cj iff Pj = P ∗.

In this way, an adversary can verify a guess P ∗ for the value of any plaintext block Pj .

Note that, if the adversary knows that Pj is one of two possible values then the adversary can
determine the actual value of Pj by executing the above attack a single time.

Similarly, if the adversary knows that Pj is one out of N possible values, then by repeating the
above attack N/2 times (on average) he can determine the actual value of Pj .

1The initial IV used by SSL 3.0 (TLS 1.0) was a (pseudo)random string generated and shared during the initial handshake
phase, subsequent IVs were chosen following the deterministic pattern previously described.
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8.2 Custom Protocols Analysis

8.2.1 (Un)Safe communication with symmetric key only
To establish a way to communicate safely over an insecure channel, Alice and Bob both generate a
random string employed as a secret parameter (sa and sb respectively). All the encryption and decryption
transformations are realized via a common ⊕ operations. The communication protocol between Alice
and Bob performs the following operations:

1. Alice encrypts the message m with sa obtaining c = Esa(m) and sends it to Bob

2. Bob encrypts the received message c with his secret sb obtaining d = Esb(d)

3. Alice decrypts the received message d and sends back to Bob e = Dsa(d)

4. Bob decrypts the received message e obtaining the original plaintext m

Discuss the security of the protocol.

Solution:

The protocol is fundamentally broken: an eavesdropper Eve obtains the following values

• c = m⊕ sa
• d = m⊕ sa ⊕ sb
• e = m⊕ sb

It is quite evident that c⊕ d = sb and d⊕ e = sa thus revealing both the secrets at the cost of a
simple eavesdropping of a single communication!

8.2.2 Secure Password Storage
Willing to prevent an attacker which comes into possess of the storage of our passwords, we decided
to store only the hashes of our passwords on permanent storage. As we are aware of common Time-
to-Memory Trade-Off (TMTO) attacks such as “Rainbow Tables”, we chose a salted hashing technique
operating as follows (consider p to be the plaintext password, and s to be a 128-bit random salt):

h = MD51000(p)⊕ s

storing the pair (h, s) on disk.

• Is there anything wrong with this choice?

A friend of ours suggested us to employ the following salted hash function:

h = MD51000(p||s)

storing (h, s).

• Is this choice better or worse than ours?

• If our users employ 8 characters passwords chosen over the lowercase alphanumeric characters,
how many bits long should be the salt to prevent an attacker able to compute 270 passwords from
employing a TMTO strategy?

• Does the previous amount of random salt prevent an attacker from bruteforcing a single password?

Solution:
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• Yes, the chosen salted hash strategy allows an attacker to easily remove the effect of the
salt through simply computing h⊕ s and then lead any TMTO attack of his choice.

• The choice is a better one: there is no trivial way to remove the salt from the hash.

• Considering that an 8 characters password over lowercase alphanumeric characters lies in a
(26 + 10)8 ≈ 241 wide password space, we need to employ a salt longer than 70− 41 = 29
bits to prevent an attacker to mount a TMTO attack precomputing all the possible hashes
for all the possible salts.

• No: the cost for the computation of a single password is 241 operations, thus it is feasible
to bruteforce it.

8.2.3 Time-To-Memory tradeoff for bruteforcing - (I)

Concerning password storage schemes, and password choice policy, the following three are proposed:

1. Passwords are chosen to be 5-character strings composed of lowercase latin letters and numbers,
and are stored as SHA256(password ⊕ s)||s, with s chosen as a 5 byte array filled with random
content

2. Passwords are chosen to be 5-character alphanumeric strings (lowercase and uppercase latin letters
allowed), and stored as SHA256(password||s)||s, with s chosen as a 5 byte array filled with random
content

3. Passwords are built concatenating 5 random words out of the first edition of the Oxford Dictionary,
which contained ≈ 256× 210 words, and stored as SHA256(password)

Analyze the feasibility of a password recovery attack lead by an attacker endowed with at most 1
TiB storage, and planning on breaking a large amount of passwords, following the same choice policy
and storage. Evaluate the computational effort required in all cases in terms of SHA256 executions,
highlighting which password choice-storage strategy is the best one.2

Solution:

1. Analyzing the password storage policy leaves the attacker with two strategies: either compute
225.85 SHA256 hashes to exhaustively search for a password, given a specific salt, or build
a rainbow table for all the possible strings resulting from the combination of the password
and the salt. Since the combination of salt and password yields a random 5 byte array, this
amounts to building a rainbow table for a 240 password-space. Given the limitation of 1
TiB, and the fact that a SHA256 hash takes 32B, it is possible to store 234 chains in the
rainbow table, thus requiring 26 SHA256 computations per look-up. It is thus feasible to
perform both a direct exhaustive search against a single password, and to employ a TMTO
strategy.

2. This strategy yields a 229.75 SHA256 computation to perform an exhaustive search of the
entire password-space. However, trying to apply a TMTO strategy would need to build a
rainbow table encompassing a 269.75 password-and-salt space, which, given the aforemen-
tioned storage capabilities, would result in a 235.75 SHA256 computations effort to perform a
single lookup. As a consequence, with this password choice-storage strategy, the attacker is
better off performing exhaustive password searches for each password, as a TMTO strategy
is both less efficient and borderline feasible given the 269.75 computations effort required to
build the rainbow table.

3. Picking 5 random words out of the Oxford dictionary yields (256 × 210)5 = 290 possible
passwords, which is well beyond feasibility for both an exhaustive search and the construction
of the corresponding rainbow table.

2Recall that log2(36) ≈ 5.17, log2(62) ≈ 5.95
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Time-To-Memory tradeoff for bruteforcing - (II)
Threefish is a block cipher with a 256-bit (32 bytes) sized block and allows the use of three different
key lengths: 256, 512 and 1024 bits. Consider the three following password hashing strategies relying on
Threefish:

(a) Split the password p in 9-byte wide blocks p0 . . . pn, and generate n+1 23-byte unpredictable random
salt blocks si, 0≤i≤n. Store on the disk a sequence of blocks hi=Threefishpi||si(pi||si) followed
by the concatenation of all the si, i.e.: h0||h1|| . . . ||hn||s0||s1|| . . . ||sn.

(b) Split the password p in 9 bytes wide blocks p0 . . . pn, and generate n+1 23-byte salt blocks si obtained
as the concatenation of a 1-byte random value for each si. Store on the disk a sequence of blocks
hi=Threefishpi||si(pi||si) followed by the concatenation of all the si.

(c) Split the password p in 32-byte wide blocks p0 . . . pn, obtain a 1024-bit unpredictable random salt s
and store on the disk a sequence of blocks hi, with
h0=s and ∀i > 0, hi=Threefishs(pi−1 ⊕ hi−1)

Assume you have 16 TiB of disk space available (average access time 1ms), 32 GiB of RAM (average
access time 0.1µs) and you are able to compute 232 Threefish encryptions or decryptions per second
on a good GPU.

State how much computational effort (i.e., how much time) is required to break the proposed password
hashing schemes with the best possible technique, and whether this is practically feasible considering
only fully lowercase passwords.

Solution:

(a) This password strategy effectively cuts down the computational effort to perform a bruteforce
to the one required to find each pi exhaustively. The keyspace of a 9 character lowercase
password is ≈ 269=(24.7)9=242, thus amounting to around 210 seconds in computation time
i.e., ≈ 20 minutes, which is feasible. The presence of a 23-byte (184-bit) unpredictable salt
however prevents time-to-memory-tradeoffs (TMTOs) to be employed.

(b) This password strategy suffers from a key recovery attack in the same fashion as the previous
one. However, considering the fact that the possible values for the salt are limited to 28,
it is possible to apply a TMTO strategy to reduce the time to break a password after a
precomputation effort of 218s, that is, around 72 hours. Employing a rainbow table strategy,
we know that besides the initial computation, the worst time to break a password is given
by l encryptions and l rainbow table lookups. Assuming that the chains are stored in
such a fashion to allow O(log(n)) access, the following efforts are required: for disk stored
rainbow tables, 238 chains can be stored, resulting in a chain length of 212, and thus ≈ 1µs
in computation time and 212 ∗ 38 ∗ 1ms (≈ 15.5s)for the disk lookups. For RAM stored
rainbow tables, 231 chains are stored, resulting in a 219 chain length yielding a ≈ 122ms
computation and a 219 ∗ 31 ∗ 0.1µs lookup time (≈ 1.6s). The best strategy to break this
password hashing thus retrieves one password in 1.6 seconds employing RAM housed rainbow
tables.

(c) This password hashing strategy is effectively encrypting the password employing Threefish
in CBC mode, using the salt as both the IV and the key. Since the salt is stored in cleartext
together with the hashed password, retrieving the password is just a matter of decrypting it
in negligible time.

8.3 Commitment schemes

8.3.1 Washing Dishes
Alice and Bob need to decide who is going to do the dishwashing for the next week, and decide to do
so via tossing a coin and transmitting the result via e-mail. To this end, Alice has devised the following
commitment scheme:
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1. Alice commits to the value v∈{head, tails} through sending to Bob c=v⊕rnd, where rnd is a
random value as long as v and completely uncorrelated with v

2. Alice claims to have committed to the value revealing (v, rnd)

• Alice claims that this scheme is very nice, as, from her point of view, Bob will not be able to cheat.
Is Alice right? Support or dismiss her commenting the binding and/or concealing properties of the
scheme.

Bob points out to Alice that he does not feel confident in using the previous scheme, as claiming that
a simple ⊕ is not enough to provide security and proposes the following scheme, for the sake of Alice’s
good:

1. Alice commits to the value v∈{head, tails} through sending to Bob
c=SHA256(k||v), where k is a 1024-bit random string

2. Alice claims to have committed to the value revealing (v, k)

• Is Bob right? Support him or disprove him analyzing the binding and concealing properties of the
scheme.

Solution:

• Alice is right: the current scheme is effectively information theoretically concealing, thus
Bob will never learn the committed value before Alice reveals rnd

• The scheme is still information theoretically concealing, thus Bob is lying on the improved
warranties for Alice. However, analyzing the binding properties of the scheme we note that
the computational effort needed for Alice to cheat (i.e. circumvent the binding property) has
dramatically risen. In particular, in the first scheme, Alice could trivially derive two values
rndh, rndt which, reveled together with the desired value, matched a commitment. In the
second scheme proposed by Bob, She needs to find a collision on the output of SHA-256,
which is currently computationally unfeasible.
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Chapter 9

Side Channel Attacks

9.1 Passive Side Channel Attacks

9.1.1 Simple and Differential Power Analysis

• Which relation between the key values and the program execution is leveraged by Simple Power
Analysis (SPA) and which by Differential Power Analysis (DPA)?

• Which one of the following two code snippets is vulnerable to SPA? Which one to DPA? (Assume
that the key value is represented by the variable k, and the value of m can be chosen by the
attacker)

1 s=m;
2 a=1;
3 for(i=0;i<ceil(log(n));i++){
4 set =((k&(2<<i))>>i);
5 to_mult= s*set + (!set )*1;
6 a=a*to_mult;
7 s=s*s;
8 }

(a) Snippet 1

1 s=m;
2 a=1;
3 for(i=0;i<ceil(log(n));i++){
4 if(k&(2<<i)){
5 a=a*s;
6 }
7 s=s*s;
8 }

(b) Snippet 2

Solution:

• Simple Power Analysis relies on the dependence of the control flow of the program from the
key values to deduce the value of the secret key from the instantaneous power consump-
tion of the circuit during the encryption. By contrast, Differential Power Analysis exploits
dependencies of the data flow of the program from the values of the secret key.

• Of the two code snippets, the second one is vulnerable to SPA, as the if statement relies
directly on the value of a bit of the key to drive the execution of the a*s multiplication,
while the first code snippet relies on a sequence of arithmetic instructions which are always
run, regardless of th e key bits. Both snippets however are vulnerable to DPA as the value
of the key bit influences directly the data flow, and they are directly employed together with
a value known to the attacker (the message).
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9.2 Fault Attacks

9.2.1 Faulty RSA-CRT signatures
A smartcard using an RSA schoolbook implementation for digital signatures contains a CRT-private key,
consisting of KCRT−priv = 〈 p, q, dp ≡ϕ(p) d, dq ≡ϕ(q) d, u ≡q p−1, v ≡p q−1 〉. The corresponding public
key consists of Kpub = (n, e), with n=10807, e=17. Somebody runs the smartcard twice in order to sign
the message m = 123 on both a regular and glitchy power supply. The fist time the smartcard returns
the signature s = 851, the second one it returns a the faulty signature s̃ = 1053.

• Find the values of the CRT-private key1

Solution:

• p=gcd(n, s̃− s)=gcd(10807, 1053− 851)=gcd(10807, 202)=gcd(202, 101)=101.
q = n/p = 107.
ϕ(n) = 100 · 106 = 10600 = 23 · 52 · 53, ϕ(ϕ(n)) = 4160,
d ≡ϕ(n) eϕ(ϕ(n))−1 ≡10600 174159 ≡10600 9353.
KCRT−priv = 〈 p, q, dp ≡ϕ(p) d, dq ≡ϕ(q) d, u ≡q p−1, v ≡p q−1 〉 =

= 〈 p=101, q=107, dp ≡ϕ(101) 53, dq ≡ϕ(107) 25, u ≡107 89, v ≡101 17 〉

1The complete solution does not require to write all the intermediate values of modular exponentiations.
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Appendix A

Useful notions for fast approximations

It is useful, when computing the size of keyspaces, to be able to express their size in terms of powers
of two. To this end recall that: 210 = 1024 ≈ 1000 = 103 (stated first by Shannon, in A Mathematical
Theory of Communication) and memorize the first ten powers of two.
Proceed as follows to obtain a quick ballpark estimate of the closest power of two to a given number n.

1. Consider only the three most significant digits of n zeroing out the others

2. Express n as h103k with the largest value of k you can use leaving h integer

3. Note that n = h103k ≈ h210k, which leaves you with the need to estimate only h in terms of powers
of two

4. Estimate the value of h using the powers of two you memorized ⇒ h ≈ 2g

5. Combine the estimates obtaining n = 2g+10k

Moreover, these notions do come in handy:

• by Stirling’s approximation, ln(n!) ≈ n ln(n)− n+O(ln(n))

• Memorizing the constant required for the base change e→ 2 in logarithms helps:
log2(a) = ln(a)

ln(2) ≈ 1.44 ln(a)

• Recalling that log2(3) ≈ 1.6 and log2(5) ≈ 2.3 is also handy

• Given the size of the English alphabet, it may come in handy to know that log2(26) ≈ 4.7004 ≈ 4.7
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Appendix B

Summary of linear algebra:
Determinant and Matrix Inversion

In linear algebra, the Laplace expansion is an expression for the determinant (det(A) or |A|) of an
n × n square matrix A that is a weighted sum of the determinants of n sub-matrices of A, each of size
(n − 1) × (n − 1). The Laplace expansion is of theoretical interest as one of several ways to view the
determinant, as well as of practical use in determinant computation.

Theorem .1 (Laplace Expansion). Given a n×n square matrix A,

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n


denote as A(i,j) the sub-matrix obtained through removing from A its i-th row and j-th column. The
determinant of the matrix, det(A), is equivalent to the computation of the following recursive procedure:

• det(A) = ai,j, if the order of the matrix is unitary, i.e. A = [ai,j ]

• det(A) =

n∑
k=1

(−1)k+i ai,k det(A(i,k)) for a chosen row 1 ≤ i ≤ n,

if the order of the matrix is greater than 1

Equivalently,

det(A) =

n∑
k=1

(−1)k+j ak,j det(A(k,j)) for a chosen column 1 ≤ j ≤ n,

if the order of the matrix is greater than 1

Observation .1. Given a square matrix A of order n, the determinant of the sub-matrix obtained through
removing the i-th row and the j-th column is called (i, j)-minor of A and denoted by Mi,j=det(A(i,j))

Observation .2. Given a square matrix A of order n, the product (−1)i+jMi,j is called (i, j)-cofactor
of A and denoted by Ci,j=(−1)i,jMi,j=(−1)i+j det(A(i,j))

Observation .3. The Laplace expansion for the computation of the determinant of a square matrix A
of order n can be written as the sum of cofactors of any row or column of the matrix multiplied by the
entries that generated them.

• Cofactor expansion along the i-th row:

det(A) = ai,1Ci,1 + ai,2Ci,2 + ai,3Ci,3 + . . .+ ai,nCi,n =

n∑
k=1

ai,kCi,k

73



A. Barenghi - G. Pelosi

• Cofactor expansion along the j-th column:

det(A) = a1,jC1,j + a2,jC2,j + a3,jC3,j + . . .+ an,jCn,j =

n∑
k=1

ak,jCk,j

Example .1. Given a square matrix A of order n = 3,

A =

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3


the computation of the (2,3)-minor M2,3 removes from A the 2nd row and the 3rd column:

A(2,3) =

a1,1 a1,2 �
� � �
a3,1 a3,2 �


and computes the determinant of the sub-matrix according to the recursive procedure of the Laplace
expansion (applied on the first row)

M23 = det(A(2,3)) =

∣∣∣∣a1,1 a1,2
a3,1 a3,2

∣∣∣∣ = a1,1 (−1)1+1
∣∣a3,2∣∣+ a1,2 (−1)1+2

∣∣a3,1∣∣
M23 = a1,1a3,2 − a1,2a3,1

Note: the vertical lines are an equivalent notation for det(matrix).

Definition .1 (Cofactor Matrix). Given a square matrix A of order n, the matrix of cofactors is the
square matrix whose (i, j) entry is the cofactor Ci,j of A.

For instance, if

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n


the cofactor matrix of A is

C =


C1,1 C1,2 · · · C1,n

C2,1 C2,2 · · · C2,n

...
...

. . .
...

Cn,1 Cn,2 · · · Cn,n


where Ci,j = (−1)i+jMi,j = (−1)i+j det(A(i,j)) = (−1)i+j |A(i,j)| is the cofactor bound to the element
ai,j .

Theorem .2 (Inverse matrix). Given a square matrix A of order n, if det(A) 6= 0 (equivalently, A is
non-singular), the inverse matrix A−1 is computed through transposing the related matrix of cofactors
and multiplying each of its elements by the inverse of the determinant of A

A−1 =
1

det(A)


C1,1 C1,2 · · · C1,n

C2,1 C2,2 · · · C2,n

...
...

. . .
...

Cn,1 Cn,2 · · · Cn,n


T

=
1

det(A)


C1,1 C2,1 · · · Cn,1
C1,2 C2,2 · · · Cn,2
...

...
. . .

...
C1,n C2,n · · · Cn,n
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Techniques for computing a determinant quickly over binary
matrices
Since the matrices involved in the LFSR state/feedback network structure reconstruction are defined
over (Z2,+, ·), the arithmetics involved is simplified and allows fast computations. In particular:

• The only valid value for the determinant of a nonsingular matrix A is 1. Consequentially, once you
checked that the matrix is nonsingular, the inverse matrix is simply the transposed of the cofactor
matrix, as the term 1

det(A) is equal to 1

• Recalling that the determinant of a matrix is zero if and only if two or more of the vectors composing
it are in linear dependence, it is possible to avoid computing the determinant of a matrix if you
notice that there are two columns or two rows containing the same values

• Due to the nature of the Laplace expansion, it is faster to compute the determinant of a matrix if
you choose a row (or column) with a high number of zeros, as they will cancel out the contribution
of their cofactor, thus avoiding the need to compute it

• As we are computing on (Z2,+, ·) (i.e. modulo 2), rembember that 1 = −1, i.e. there are no signs
to take care about
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